

Traffic Impact Study for the Haystack Pacifica Project

Prepared for the City of Petaluma

Submitted by **W-Trans**

April 16, 2019

This page intentionally left blank

Table of Contents

Execut	ive Summary	1
Introdu	uction	2
Transp	ortation Setting	4
Capaci	ty Analysis	8
Project	t Traffic Impacts Analysis	
Access	and Circulation	21
Alterna	ative Modes	
Conclu	isions and Recommendations	
Study I	Participants and References	
Figures	5	
1.	Study Area and Lane Configurations	
2.	Existing Traffic Volumes	10
3.	Future Traffic Volumes	
4.	Site Plan	14
5.	Project Traffic Volumes	15
Tables		
1.	Collision Rates at the Study Intersections	5
2.	Bicycle Facility Summary	б
3.	Transit Routes	
4.	Intersection Level of Service Criteria	
5.	Existing Peak Hour Intersection Levels of Service	
6.	Future Peak Hour Intersection Levels of Service	
7.	Trip Generation Summary	
8.	Trip Distribution Assumptions	
	Existing and Existing plus Project Peak Hour Intersection Levels of Service	
10.	Future and Future plus Project Peak Hour Intersection Levels of Service	18
Appen	dices	
Α.	Collision Rate Calculations	
В.	Intersection Level of Service Calculations	

- C. Signal Warrants
- D. Proportional Share Spreadsheet
- E. Turn Lane Warrants

This page intentionally left blank

Executive Summary

The proposed Haystack Pacifica mixed use development would include construction of 178 apartment units and 24.855 square feet of commercial space in the City of Petaluma. Access to the site would occur via two driveways to be located on Weller Street. A "transverse" street bisecting the project site and connecting Weller Street and Copeland Street is proposed as part of the project.

Based on standard trip generation rates, the proposed project would be expected to generate an average of 732 daily trips, with 76 trips during the morning peak hour and 95 during the evening peak hour.

The study area includes the intersections of East Washington Street/Weller Street, East Washington Street/ Copeland Street, East D Street/Weller Street, East D Street Copeland Street, and the future intersections of the project's "transverse street" with Weller Street and Copeland Street. All the study intersections are currently operating acceptably overall at LOS D or better and would be expected to continue operating at the same service levels with the addition of project-generated traffic.

Under anticipated future volumes, the study intersections are expected to operate acceptably, except East D Street/Copeland Street, which is expected to operate unacceptably at LOS F during both peak hours. A signal is warranted for East D Street/Copeland Street and is planned per the *Central Petaluma Specific Plan*. Upon signalization, the intersection would operate acceptably during both peak hours. The study intersections would be expected to continue operating acceptably overall upon adding project traffic to future volumes.

The project should pay a proportional share equal to 5.4 percent of the cost of signalization of East D Street/ Copeland Street.

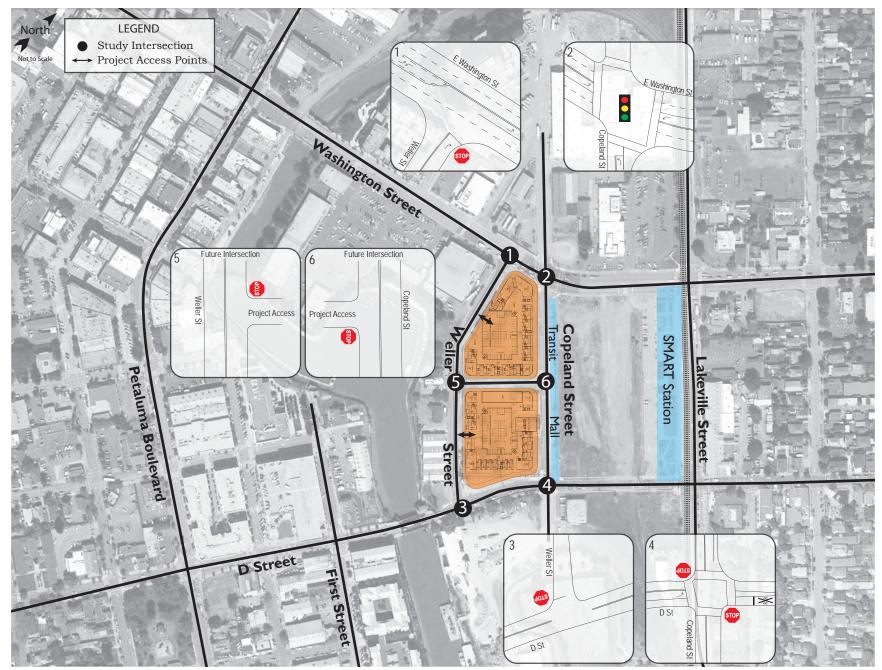
Facilities providing access to the site via alternative modes, including pedestrians, bicyclists, and transit riders, are adequate and would be improved with the project as plans to expand the bike system would be realized. Racks or other structures to provide secure parking facilities for at least 20 bicycles should be provided as part of the project. The project should install colored pavement or other similar traffic calming enhancements to the midblock crosswalk on the Transverse Street. Stamped concrete should be avoided given the potential for bicycle activity. Shared lane bike markings or "Sharrows" should also be provided on Copeland Street and, if desired by the City, along Weller Street. Wayfinding signage should be installed for pedestrians and bicyclists to indicate transit connections and points of interest.

Sight distances at the transverse street intersections with Weller Street and Copeland Street and at all project driveways would be adequate, except that corner sight distance for vehicles turning left onto Weller Street from the transverse street would be limited by the curvature of Weller Street and the location of the project building. Therefore, left-turns from the transverse street to Weller Street should be prohibited. Landscaping at all project driveways should be maintained and trimmed back to provide clear sight lines.

Left-turn lanes are not warranted, and therefore not recommended, at the project's driveways on Weller Street or at the proposed new street intersections on Weller Street and Copeland Street.

Introduction

This report presents an analysis of the potential traffic impacts that would be associated with occupation of the proposed Haystack Pacifica mixed use development, which would be located on a vacant parcel bound by Copeland Street, East D Street, Weller Street and East Washington Street in the City of Petaluma adjacent to the Petaluma River turning basin. The traffic study was completed in accordance with the criteria established by the City of Petaluma, and is consistent with standard traffic engineering techniques. Impacts of the project on issues such as traffic safety, intersection level of service, site access, Copeland Street transit mall interaction, pedestrian facilities, bicycle facilities, and transit were explored.


Prelude

The purpose of a traffic impact study is to provide City staff and policy makers with data that they can use to make an informed decision regarding the potential traffic impacts of a proposed project, and any associated improvements that would be required in order to mitigate these impacts to a level of insignificance as defined by the City's General Plan or other policies. Vehicular traffic impacts are typically evaluated by determining the number of new trips that the proposed use would be expected to generate, distributing these trips to the surrounding street system based on existing travel patterns or anticipated travel patterns specific to the proposed project, then analyzing the impact the new traffic would be expected to have on critical intersections or roadway segments. Impacts relative to access for pedestrians, bicyclists, and to transit are also addressed.

Project Profile

The Haystack Pacifica project would result in the development of a mixed-use center on a site bound by Copeland Street, East D Street, Weller Street and East Washington Street in the City of Petaluma. The project would include the development of 24.855 square feet of commercial space and 178 apartment units. The project would be developed on two blocks separated by an internal "transverse street" which would provide access between the Petaluma River turning basin and the Copeland Street transit mall. Vehicle access to each of the two blocks for residents, employees and visitors of this mixed-use development would be via two driveways on Weller Street. Pedestrian and bicycle connections would also be provided around the perimeter of the site. The project is in proximity to the Copeland Transit Mall and the SMART rail station, as well as the downtown and riverfront areas of Petaluma. The project location and adjacent roadway network are shown in Figure 1.

183pet.ai 5/18

Transportation Setting

Operational Analysis

Study Area and Periods

The study area consists of the following intersections, as shown on Figure 1:

- 1. East Washington Street/Weller Street
- 2. East Washington Street/Copeland Street
- 3. East D Street/Weller Street
- 4. East D Street/Copeland Street
- 5. Weller Street/Project's "Transverse" Street
- 6. Copeland Street/ Project's "Transverse" Street

Operating conditions during the a.m. and p.m. peak periods were evaluated to capture the highest potential impacts for the proposed project as well as the highest volumes on the local transportation network. The morning peak hour occurs between 7:00 and 9:00 a.m. and reflects conditions during the home to work or school commute, while the p.m. peak hour occurs between 4:00 and 6:00 p.m. and typically reflects the highest level of congestion during the homeward bound commute.

Study Intersections

Given the orientation of many streets in Petaluma at an angle that is skewed from north-south or east-west, for purposes of the evaluation, the orientation convention used was to consider East Washington Street and D Street as east-west streets.

East Washington Street/Weller Street is a two-way stop-controlled tee intersection with northbound Weller Street approach stop-controlled, while East Washington Street is free flowing. Northbound left-turn movements are restricted by a center median on East Washington Street. There are no marked crosswalks at this intersection.

East Washington Street/Copeland Street is a signalized intersection with permitted left-turn phasing on the Copeland Street approaches and protected left-turn phasing on the East Washington Street approaches. Marked crosswalks and pedestrian signals are provided on all four legs.

East D Street/Weller Street is a tee intersection with stop controls on the Weller Street approach. There are no marked crosswalks at this intersection.

East D Street/Copeland Street is a four-legged intersection with stop controls on Copeland Street. Crosswalks are located on all approaches. Pedestrian-activated warning lights are provided on the crossings of East D Street.

Weller Street/Project's "Transverse" Street and **Copeland Street/Project's "Transverse" Street** are proposed to be tee intersections. The project's "transverse" street would bisect the project site and would connect Weller Street with Copeland Street.

The locations of the study intersections and the existing lane configurations and controls are shown in Figure 1.

Collision History

The collision history for the study area was reviewed to determine any trends or patterns that may indicate a safety issue. Collision rates were calculated based on records available from the California Highway Patrol as published in their *Statewide Integrated Traffic Records System (SWITRS)* reports. The most current five-year period available is September 1, 2012 through August 31, 2017.

As presented in Table 1, the calculated collision rates for the study intersections were compared to average collision rates for similar facilities statewide, as indicated in *2014 Collision Data on California State Highways*, California Department of Transportation (Caltrans). The collision rate calculations are provided in Appendix A.

Tal	Table 1 – Collision Rates at the Study Intersections								
Study Intersection		Number of Collisions (2012-2017)	Calculated Collision Rate (c/mve)	Statewide Average Collision Rate (c/mve)					
1.	E Washington St/Weller St	2	0.06	0.18					
2.	E Washington St/Copeland St	4	0.11	0.27					
3.	E D St/Weller St	6	0.19	0.18					
4.	E D St/Copeland St	13	0.42	0.15					

Note: c/mve = collisions per million vehicles entering; **bold** text = collision rate is higher than the statewide average

The collision rate at the intersection of East D Street/Weller Street is slightly higher than the statewide average. Three of the six collisions were rear-end crashes, which are generally associated with the congested urban intersections. The collision rate is nearly equal to the statewide average and the intersection injury rate of 33.3 percent is lower than the 36.4 percent statewide average.

East D Street/Copeland Street has had collisions at a considerably higher rate than the statewide average for similar facilities; however, only 23.1 percent of crashes resulted in injuries, which is substantially lower than the statewide average injury rate of 41.9 percent. The most notable trends were rear-end collisions, which are associated with congestion at the intersection. It is recommended to increase enforcement activity near the intersection to reduce speeding.

Alternative Modes

Pedestrian Facilities

Pedestrian facilities include sidewalks, crosswalks, pedestrian signal phases, curb ramps, and curb extensions. In general, a network of sidewalks, crosswalks, pedestrian signals, and curb ramps provide access for pedestrians in the vicinity of the proposed project site; however, sidewalk gaps are currently found along the Weller Street site frontage. Crosswalks are equipped with pedestrian-activated Rectangular Rapid Flashing Beacons (RRFB) on the East D Street legs at its intersection with Copeland Street. Pedestrian-activated in pavement flashing lights exist at the midblock crosswalk located on Copeland Street between East D Street and East Washington Street. An additional uncontrolled midblock crossing is located on Weller Street between D Street and East Washington Street.

There are continuous sidewalks on East Washington Street connecting the site to the City's downtown core area as well as to commercial areas along East Washington Street northeast of Lakeville Street. A pedestrian connection

exists between the midblock crossing on Weller Street through the Golden Eagle Shopping Center that provides a connection to the downtown via the Balshaw Pedestrian Bridge.

Bicycle Facilities

The Highway Design Manual, Caltrans, 2017, classifies bikeways into four categories:

- **Class I Multi-Use Path** a completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.
- **Class II Bike Lane** a striped and signed lane for one-way bike travel on a street or highway.
- **Class III Bike Route** signing only for shared use with motor vehicles within the same travel lane on a street or highway.
- **Class IV Bikeway** also known as a separated bikeway, a Class IV bikeway is for the exclusive use of bicycles and includes a separation between the bikeway and the motor vehicle traffic lane. The separation may include, but is not limited to, grade separation, flexible posts, inflexible physical barriers, or on-street parking.

In the project area, Class II bike lanes exist on both sides of Lakeville Street between East D Street and East Washington Street. Bicyclists ride in the roadway and/or on sidewalks along all other streets within the project study area. Table 2 summarizes the existing and planned bicycle facilities in the project vicinity, as contained in the *City of Petaluma: Bicycle and Pedestrian Plan: an Appendix to the General Plan 2025,* May 2008.

Table 2 – Bicycle Facility Summary								
Status Facility	Class	Length (miles)	Begin Point	End Point				
Existing								
Western Ave	II	1.9	Petaluma Blvd S	City Limits				
B St	II	0.8	Petaluma Blvd S	El Rose Dr				
D St	II	1.6	Petaluma Blvd S	City Limits				
Petaluma Blvd N	III	0.71	Lakeville St	D St				
E Washington St	Ш	1.09	Howard St	Kenilworth Dr				
Lakeville St	II	0.13	Washington St	D St				
Planned								
NWP Trail	I	2.21	Lynch Creek	Adobe Creek				
Copeland St	П	0.17	Madison St	E Washington St				
D St	/	0.68	Petaluma Blvd S	Payran St				
Copeland St	III	0.14	E Washington St	D St				
Petaluma River Trail	1	0.37	Lakeville St	E Washington St				
SMART Trail	Ш		Entire SMART Corridor	Entire SMART Corridor				

Source: City of Petaluma: Bicycle and Pedestrian Plan: an Appendix to the General Plan 2025, City of Petaluma, 2008

Transit Facilities

Local, fixed-route bus transit service is provided by the City of Petaluma through its Petaluma Transit Service. Additional regional service is provided by Sonoma County Transit and Golden Gate Transit. The Copeland Transit Mall is located along the east side of Copeland Street across the street from the project's Copeland Street frontage. Table 3 provides a summary of both local and regional transit services that are provided near the project site.

Table 3 – Transit Routes								
Transit Agency		Nearest Stop						
Route – Regions Served	Wee	kday	Satu	ırday	Sur	nday		
	Times	Headway	Times	Headway	Times	Headway		
Petaluma Transit								
10 – West Petaluma	7:30 AM – 6:30 PM	1 hr					Copeland Transit Mall	
11 – Downtown & Eastside Transit Center	6:30 AM – 8:30 PM	30 min	7:30 AM – 8:30 PM	30 min	8:30 AM – 5:30 PM	30 min	Copeland Transit Mall	
24 – Southeast Petaluma	6:15 AM – 7:00 PM	30 min- 1 hr					Copeland Transit Mall	
Sonoma County Transit								
40/53 – Sonoma to Petaluma (commute hours only)	6:30 AM – 7:00 PM	1-1.5 hr					Copeland Transit Mall	
44/48/48X/54 – Santa Rosa to Petaluma	5:20 AM – 10:30 PM	15 min- 1 hr	7:00 AM – 10:00 PM	1-2 hr	7:00 AM – 10:00 PM	1-2 hr	Copeland Transit Mall	
Golden Gate Transit								
74 SB – Santa Rosa to San Francisco	5:00 AM – 10:00 AM	30 min					Petaluma Depot (4 th St/C St)	
74 NB – San Francisco to Santa Rosa	3:00 PM – 8:30 PM	30 min – 1 hr					Petaluma Depot (4 th St/C St)	
101/101X SB – Santa Rosa to San Francisco	4:00 AM – 12:00 AM	1 hr	4:00 AM – 12:00 AM	1 hr	4:00 AM – 12:00 AM	1 hr	Copeland Transit Mall	
101/101X NB – San Francisco to Santa Rosa	5:20 AM – 2:30 AM	1 hr	6:30 AM – 2:30 AM	1 hr	6:30 AM – 2:30 AM	1 hr	Copeland Transit Mall	

Notes: SB = Southbound; NB = Northbound

Two bicycles can be carried on most Petaluma Transit, Sonoma County Transit, and Golden Gate Transit buses. Bike rack space is on a first come, first served basis. Additional bicycles are allowed on the buses at the discretion of the driver.

Petaluma Paratransit is designed to serve the needs of individuals with disabilities within the City and the greater Petaluma area who are unable to independently use fixed-route transit services. Trips can be reserved for travel Monday through Friday, 6:20 a.m. to 7:15 p.m., Saturday, 7:20 a.m. to 5:45 p.m., and Sunday, 8:20 a.m. to 4:45 p.m.

Sonoma-Marin Area Rail Transit (SMART)

The project site is located one block west of the SMART Corridor and the Petaluma downtown station at the historic train station. The SMART commuter rail system currently includes 43 miles of rail corridor and 10 stations from the Sonoma County Airport to Downtown San Rafael. Upon completion, the passenger rail service will extend 70 miles from Cloverdale, at the north end of Sonoma County, to Larkspur where the Golden Gate Ferry connects Marin County with San Francisco. Along with commuter rail service, a multi-use pathway is planned parallel to the rail corridor. The project would be connected to the SMART station via a pedestrian connection across the block east of Copeland Street.

Intersection Level of Service Methodologies

Level of Service (LOS) is used to rank traffic operation on various types of facilities based on traffic volumes and roadway capacity using a series of letter designations ranging from A to F. Generally, Level of Service A represents free flow conditions and Level of Service F represents forced flow or breakdown conditions. A unit of measure that indicates a level of delay generally accompanies the LOS designation.

The study intersections were analyzed using methodologies published in the *Highway Capacity Manual* (HCM), Transportation Research Board, 2010. This source contains methodologies for various types of intersection control, all of which are related to a measurement of delay in average number of seconds per vehicle.

The Levels of Service for the intersections with side street stop controls were analyzed using the "Two-Way Stop-Controlled" intersection capacity method from the HCM. This methodology determines a level of service for each minor turning movement by estimating the level of average delay in seconds per vehicle. Results are presented for individual movements together with the weighted overall average delay for the intersection.

The study intersections that are currently controlled by a traffic signal, or may be in the future, were evaluated using the signalized methodology from the HCM. This methodology is based on factors including traffic volumes, green time for each movement, phasing, whether or not the signals are coordinated, truck traffic, and pedestrian activity. Average stopped delay per vehicle in seconds is used as the basis for evaluation in this LOS methodology. For purposes of this study, delays were calculated using actual signal timing from timing sheets provided by the City of Petaluma and future signal operation was calculated using optimized signal timing. The ranges of delay associated with the various levels of service are indicated in Table 4.

Table	Table 4 – Intersection Level of Service Criteria									
LOS	Two-Way Stop-Controlled	Signalized								
A	Delay of 0 to 10 seconds. Gaps in traffic are readily available for drivers exiting the minor street.	Delay of 0 to 10 seconds. Most vehicles arrive during the green phase, so do not stop at all.								
В	Delay of 10 to 15 seconds. Gaps in traffic are somewhat less readily available than with LOS A, but no queuing occurs on the minor street.	Delay of 10 to 20 seconds. More vehicles stop than with LOS A, but many drivers still do not have to stop.								
С	Delay of 15 to 25 seconds. Acceptable gaps in traffic are less frequent, and drivers may approach while another vehicle is already waiting to exit the side street.	Delay of 20 to 35 seconds. The number of vehicles stopping is significant, although many still pass through without stopping.								
D	Delay of 25 to 35 seconds. There are fewer acceptable gaps in traffic, and drivers may enter a queue of one or two vehicles on the side street.	Delay of 35 to 55 seconds. The influence of congestion is noticeable, and most vehicles have to stop.								
E	Delay of 35 to 50 seconds. Few acceptable gaps in traffic are available, and longer queues may form on the side street.	Delay of 55 to 80 seconds. Most, if not all, vehicles must stop and drivers consider the delay excessive.								
F	Delay of more than 50 seconds. Drivers may wait for long periods before there is an acceptable gap in traffic for exiting the side streets, creating long queues.	Delay of more than 80 seconds. Vehicles may wait through more than one cycle to clear the intersection.								

Reference: Highway Capacity Manual, Transportation Research Board, 2010

Traffic Operation Standards

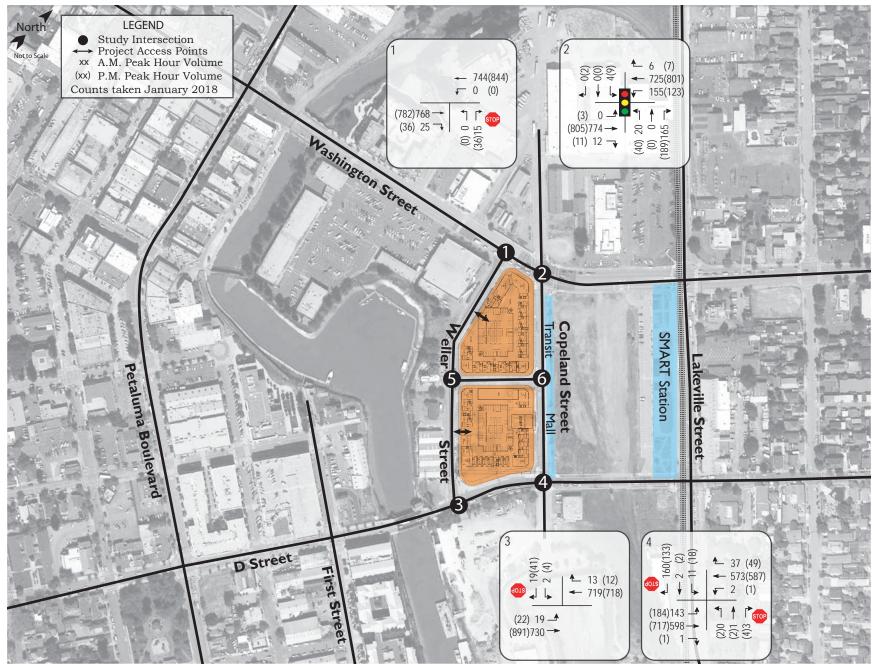
Given the proximity of the project to high-quality transit, the City has provided direction to evaluate project impacts based on Vehicle Miles Traveled. A VMT baseline was determined for the City using the Sonoma County Transportation Authority model. Generally, the State and Metropolitan Transportation Commission use a threshold of a 15 percent reduction in vehicle-miles traveled per capita (or population) with the project as compared to baseline conditions.

Existing Conditions

The Existing Conditions scenario provides an evaluation of current operation based on existing traffic volumes during the a.m. and p.m. peak periods. This condition does not include project-generated traffic volumes. Volume data was collected in January 2018 while local schools were in session.

Intersection Levels of Service

Under existing conditions, all study intersections operate acceptably at LOS D or better; however, it is noted that the minor street approaches at East D Street/Copeland Street experience high levels of delay during the evening peak hour. The existing traffic volumes are shown in Figure 2. A summary of the intersection level of service calculations is contained in Table 5, and copies of the Level of Service calculations are provided in Appendix B.


Tal	Table 5 – Existing Peak Hour Intersection Levels of Service									
Stu	Study Intersection		Peak	PM F	Peak					
	Approach	Delay	LOS	Delay	LOS					
1.	East Washington St/Weller St	0.1	А	0.3	А					
	Weller St Approach	11.7	В	12.1	В					
2.	East Washington St/Copeland St	19.0	В	28.3	С					
3.	East D St/Weller St	0.4	А	0.6	А					
	Weller St Approach	18.2	С	19.7	С					
4.	East D St/Copeland St	4.5	А	7.0	А					
	NB Copeland St Approach	22.6	С	61.5	F					
	SB Copeland St Approach	31.3	D	62.1	F					

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics*; NB = Northbound; SB = Southbound

Future Conditions

The Future Conditions scenario presents a review of the correlation between the project and the *City of Petaluma*: *General Plan 2025*. The City of Petaluma has developed a Traffic Model for use in evaluating the potential traffic impacts of buildout of the land uses described in the General Plan together with new or improved streets. The General Plan was developed based on a horizon year of 2025; however, due to changes in economic conditions since the General Plan was completed, it is expected that buildout of the General Plan land uses would occur after 2025. Peak hour volumes for the remaining five intersections were developed based on the City's Traffic Model as well as a review of growth at adjacent intersections.

183pet.ai 6/18

In the City's Traffic Model, it was assumed that the site would be developed with 200 multi-family residential units, 10,000 square feet of retail and 6,000 square feet of light industrial uses. While the proposed project would deviate slightly from this assumption, it was determined that the traffic that would be generated by the proposed project is generally consistent with what was assumed for the site in the City's Traffic Model.

Within the study area, the *Central Petaluma Specific Plan* called for a traffic signal at the intersection of East D Street/Copeland Street with additional turn lanes. For the purposes of this study, the intersection was evaluated under Future Conditions with the existing traffic control and lane configurations. Based on the level of service results, the need for the planned improvements were determined.

Future Intersection Operations

Under Future conditions without the project, it is expected that all of the study intersections will operate acceptably at LOS D or better with the exception of East D Street/Copeland Street. This intersection has been identified for future signalization in the *Central Petaluma Specific Plan*. If signalized, East D Street/Copeland Street would operate acceptably under future conditions. (See further discussion under Traffic Signal Warrants.) Future operating conditions are summarized in Table 6, Future volumes are shown in Figure 3, and calculations are provided in Appendix B.

Tal	Table 6 – Future Peak Hour Intersection Levels of Service									
Study Intersection		AM F	Peak	PM F	Peak					
	Approach	Delay	LOS	Delay	LOS					
1.	East Washington St/Weller St	0.3	А	0.2	А					
	Weller St Approach	11.5	В	12.9	В					
2.	East Washington St/Copeland St	23.6	С	40.6	D					
3.	East D St/Weller St	0.7	А	0.8	А					
	Weller St Approach	31.8	D	39.4	Ε					
4.	East D St/Copeland St	120.0	F	**	F					
	NB Copeland St Approach	75.6	F	**	F					
	SB Copeland St Approach	**	F	**	F					
	Signalized	16.2	В	25.5	С					

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; **Bold** text = deficient operation; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics*; ** = delay greater than 120 seconds; Shaded cells = conditions with recommended improvements; NB = Northbound; SB = Southbound

183pet.ai 6/18

Traffic Impact Study for the Haystack Pacifica Project Figure 3 – Future Traffic Volumes

Project Traffic Impacts Analysis

Project Description

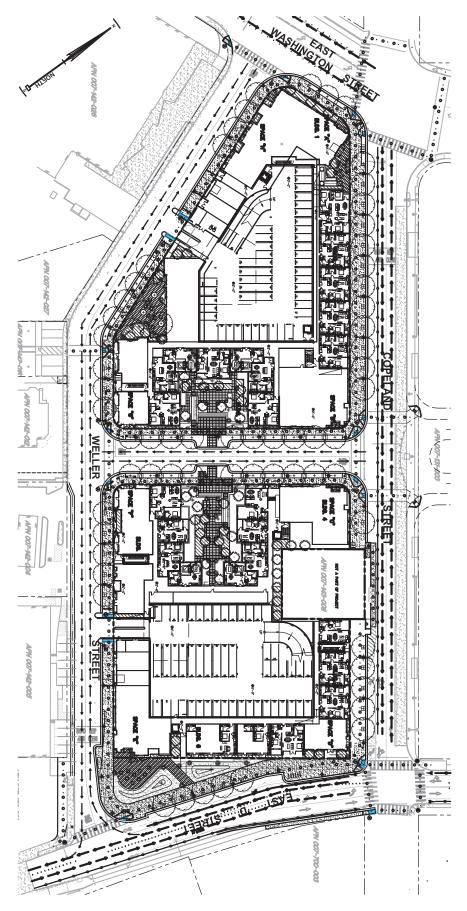
The proposed mixed-use development consists of 24,855 square feet of commercial space and 178 apartments units. Vehicle access to the site would be obtained via two driveways on Weller Street. The development would include installation of an internal street, bisecting the site and connecting Weller Street to Copeland Street. The proposed project site plan is shown in Figure 4.

Vehicle Trip Generation

The anticipated vehicle trip generation for the proposed project was estimated using multi-variable regression equations published by the Institute of Transportation Engineers (ITE) in *Trip Generation Manual*, 10th Edition, 2017. The trip generation potential of the project as planned was developed using the regression analysis for "Mid-Rise Residential with 1st-Floor Commercial" (LU #231) projects located in dense multi-use urban sites, as this type of site is representative of the study area. This area type is located just outside the Central Business District (CBD) and includes buildings with little or no setback from the sidewalk.

Traffic associated with a mixed-use development, such as the proposed project, has several different trip components. Some trips are made without leaving the site as residents of the mid-rise apartments could patronize the commercial uses. Additionally, due to the proximity to the Copeland Transit Mall, the SMART rail station and Downtown Petaluma, some site residents, employees and visitors may choose to walk, bicycle or use transit to reach their destination. The regression equations developed by ITE used to estimate the project's trip generation are based on various studies conducting for similar land uses located in similar settings; therefore, the trip reduction rates are already incorporated into the equations. The proposed project is expected to generate an average of 76 a.m. peak hour trips and 95 p.m. peak hour trips, as summarized in Table 7.

Table 7 – Trip Generation Summary											
Land Use	Units	Da	aily		AM Pea	k Hou	ır		PM Pea	k Hou	r
		Rate	Trips	Rate	Trips	In	Out	Rate	Trips	In	Out
Proposed											
Mid-Rise Residential with 1 st -Floor Commercial ¹	178 ou		732		76	21	55		95	67	29
Total Trip Generation			732		76	21	55		95	67	29


Note: ou = occupied units

¹ A regression equation for daily trips is not provided in *Trip Generation Manual*. Daily trips were calculated using the linear daily trip generation rate for Mid-Rise Residential with 1st-Floor Commercial (LU #231), and adjusted based on the ratio of p.m. peak hour rates

Trip Distribution

The patterns used to allocate new commercial and residential project trips to the street network were based on the adjacent roadway network, likely origin/destination points and current traffic patterns. The proposed trip distribution pattern is consistent with the assumptions applied in a previous analysis completed for the site (*Haystack Mixed-Use Project Traffic Impact Study*, 2009). The resulting project traffic volumes are shown on Figure 5. The proposed distribution assumptions are summarized in Table 8.

Source: BDE Architecture 2/18

Traffic Impact Study for the Haystack Pacifica Project Figure 4 – Site Plan

183pet.ai 6/18

Traffic Impact Study for the Haystack Pacifica Project Figure 5 – Project Traffic Volumes

Table 8 – Trip Distribution Assumptions							
Origin/Destination	Commercial Distribution	Residential Distribution					
East Washington St (East of Copeland St)	20%	35%					
East Washington St (West of Weller St)	25%	25%					
East D St (East of Copeland St)	25%	23%					
East D St (West of Weller St)	30%	17%					
TOTAL	100%	100%					

Vehicle Miles Traveled

Vehicle miles traveled as a result of the project were calculated by multiplying the estimated number of trips and the average trip distance for the Traffic Analysis Zone (TAZ) in which the project is located. Average trip distances are published by SCTA in the County Model. The calculated daily VMT for the project is 2,340 miles. As stated in the Proposed CEQA Guideline Section 15064.3, subdivision (b)(1), projects that include a mix of residential, retail, and office that are located within half-a-mile of an existing major transit stop or an existing stop along a high-quality transit corridor will have a less-than-significant impact on VMT.

Finding – The project is located directly adjacent to the Copeland Transit Mall and a quarter-mile from the Petaluma SMART Station and, therefore, presumed to have a less-than-significant impact on vehicle miles traveled.

Intersection Operation

Existing plus Project Conditions

Upon the addition of project-related traffic to the Existing volumes, the study intersections are expected to continue to operate acceptably with a marginal change in average delay. It is noted that while the intersection of East D Street/Copeland Street is expected to experience a high level of side-street delay, the intersection is projected to operate acceptably. The need for a traffic signal at East D Street/Copeland Street is discussed later in this section. These results are summarized in Table 9.

Study Intersection		E	xisting	Conditio	ns	Existing plus Project			
	Approach		AM Peak PM Peak		AM Peak		PM Peak		
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1.	East Washington St/Weller St	0.1	А	0.3	А	0.2	А	0.3	А
	Weller St Approach	11.7	В	12.1	В	11.9	В	12.3	В
2.	East Washington St/Copeland St	19.0	В	28.3	С	19.6	В	28.3	С
3.	East D St/Weller St	0.4	А	0.6	А	1.0	А	1.1	А
	Weller St Approach	18.2	С	19.7	С	27.2	D	26.3	D
4.	East D St/Copeland St	4.5	А	7.0	А	5.5	А	8.8	А
	NB Copeland St Approach	22.6	С	61.5	F	22.9	С	65.3	F
	SB Copeland St Approach	31.3	D	62.1	F	39.2	Ε	79.3	F
5.	Weller St/Internal St	Pro	ject-onl	y intersec	tion	1.0	А	1.2	А
	WB Internal St Approach					8.6	A	8.6	Α
6.	Copeland St/Internal St	Pro	Project-only intersection			0.5	А	0.3	А
	EB Internal St Approach					10.6	В	10.7	В

Table 9 – Existing and Existing plus Project Peak Hour Intersection Levels of Service

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics;* NB = Northbound; SB = Southbound; EB = Eastbound; WB = Westbound

With the addition of project-related traffic volumes, average delays during the p.m. peak hour at the intersection of East Washington Street/Copeland Street remain unchanged under Existing plus Project conditions. While this is counter-intuitive, this condition occurs when a project adds trips to movements that have delays that are below the intersection average, resulting in a better balance between approaches. The project adds traffic that will result in slightly increased delays on some of the intersection's individual movements, but these increases are offset by the addition of traffic to delays that are lower than the average for the intersection as a whole. In the case of this particular project, the intersection's overall delay that is calculated using the weighted averages of individual movements ultimately remains unchanged. The conclusion could incorrectly be drawn that the project has no effect on operation based on this data alone; however, it is more appropriate to conclude that the project trips are expected to make use of excess capacity, so drivers will experience little, if any, change in conditions at this intersection as a result of the project.

Finding – The study intersections are expected to continue operating acceptably at the same levels of service upon the addition of project-generated traffic to existing volumes.

Future plus Project Conditions

Upon the addition of project-generated traffic to the anticipated Future volumes, the study intersection of East D Street/Copeland Street is expected to continue operating unacceptably, with all other study intersections operating acceptably. The Future plus Project operating conditions are summarized in Table 10.

Study Intersection			Future	Condition	S	Future plus Project			
	Approach		AM Peak PM Peak		AM F	Peak	PM Peak		
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1.	East Washington St/Weller St	0.3	А	0.2	А	0.4	А	0.2	А
	Weller St Approach	11.5	В	12.9	В	11.6	В	13.1	В
2.	East Washington St/Copeland St	23.6	С	40.6	D	23.8	С	41.1	D
3.	East D St/Weller St	0.7	А	0.8	А	1.4	А	1.4	А
	Weller St Approach	31.8	D	39.4	Ε	34.7	D	51.7	F
4.	East D St/Copeland St	120.0	F	**	F	130.3	F	**	F
	NB Copeland St Approach	75.6	F	**	F	78.5	F	**	F
	SB Copeland St Approach	**	F	**	F	**	F	**	F
	Signalized	16.2	В	25.5	С	16.5	В	27.6	С
5.	Weller St/Internal St	Pro	oject-on	ly intersec	tion	0.8	А	1.2	А
	WB Internal St Approach					8.5	Α	8.6	Α
6.	Copeland St/Internal St	Pro	Project-only intersection			0.3	А	0.2	А
	EB Internal St Approach					15.7	С	17.5	С

Table 10 – Future and Future plus Project Peak Hour Intersection Levels of Service

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service; **Bold** text = deficient operation; * Unacceptable operation is considered significant and unavoidable in the City's General Plan; Results for minor approaches to two-way stop-controlled intersections are indicated in *italics;* ** = delay greater than 120 seconds; NB = Northbound; SB = Southbound; EB = Eastbound; WB = Westbound; Shaded cells = conditions with recommended improvements

The intersection of D Street/Copeland Street has been identified for future signalization in the *Central Petaluma Specific Plan*. If signalized, and with the addition of project-generated traffic, East D Street/Copeland Street would operate acceptably under future conditions. From the analysis it was determined that the most appropriate lane configuration for future conditions includes exclusive left-turn lanes on all approaches with shared through/right turn lanes. Prior to development of the property on the south side of East D Street, the southbound Copeland Street approach could include a shared left-turn/through lane and an exclusive right-turn lane to better serve traffic. After development on the south side, the approach would need to be restriped with an exclusive left-turn lane for better signal optimization. Also, based on a review of left-turn lane queuing from the intersection operational analysis, the eastbound D Street approach should provide a minimum of 100 feet of storage. (The *Central Petaluma Specific Plan* calls for a left-turn lane extending the length of the block.)

Recommendation – It is recommended that the project applicant pay a proportional share of the cost of signalization of East D Street/Copeland Street, as discussed in the next section. Based on the intersection operational analysis with a traffic signal, the eastbound left-turn lane on East D Street should include 100 feet of storage.

Signalization of East D Street/Copeland Street

The *Central Petaluma Specific Plan* identifies the intersection of D Street/Copeland Street for future signalization. The proposed project is located within the Specific Plan area, immediately adjacent to D Street/Copeland Street. Therefore, the project's contribution to the need for a signal was considered.

Intersection Operations

Overall, the intersection of East D Street/Copeland Street currently operates acceptably. However, it is noted that the northbound and southbound Copeland Street approaches experience high levels of delay during the evening peak period. The intersection would continue to operate acceptably overall with the addition of project-generated traffic.

Under future conditions, the intersection is expected to operate unacceptably at LOS F overall, with excessive delays on the Copeland Street approaches as well as the East D Street left-turn movements. With the addition of project-generated traffic, the intersection would continue to operate unacceptably, with increased delay. If signalized, the intersection is projected to operate acceptably at LOS C or better under both Future and Future plus Project conditions.

Traffic Signal Warrants

A signal warrant analysis was performed to determine need for a traffic signal at D Street/Copeland Street. Chapter 4C of the *California Manual on Uniform Traffic Control Devices for Streets and Highways* (CA-MUTCD) provides guidance on when a traffic signal should be considered. There are eight different warrants, or criteria, presented. Warrant 3, which is the peak-hour warrant, was applied to this analysis, which is described as follows:

Warrant 3, which is often the first warrant to be met, has a notice that this signal warrant shall be applied only in unusual cases, such as office complexes, manufacturing plants, industrial complexes, or high-occupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time. Under the Peak Hour Warrant the need for a traffic control signal shall be considered if an engineering study finds that the criteria in either of the following two categories are met:

- A. If all three of the following conditions exist for the same one hour (any four consecutive 15-minute periods) of an average day:
 - 1. The total stopped time delay experienced by the traffic on one minor-street approach (one direction only) controlled by a STOP sign equals or exceeds: four vehicle-hours for a one-lane approach; or five vehicle-hours for a two-lane approach, and
 - 2. The volume on the same minor-street approach (one direction only) equals or exceeds 100 vehicles per hour for one moving lane of traffic or 150 vehicles per hour for two moving lanes, and
 - 3. The total entering volume serviced during the hour equals or exceeds 650 vehicles per hour for intersections with three approaches or 800 vehicles per hour for intersections with four or more approaches.
- B. The plotted point representing the vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only) for one hour (any four consecutive 15-minute periods) of an average day falls above the applicable curve in Figure 4C-3 for the existing combination of approach lanes.

For the purposes of this study, Warrant 3, the Peak Hour volume warrant, which determines the need for traffic control based on the highest volume hour of the day, was used as an initial indication of traffic control needs. The use of this signal warrant is common practice for planning studies. Other warrants, which are more generally applicable to existing traffic issues, require collection of traffic volumes for the highest four or eight hours of the day, review of the collision history, and evaluation of the system surrounding the location. Since Warrant 3 is intended primarily to be used in areas with a disproportionately high level of peak hour traffic volumes, satisfying the warrant does not in and of itself necessarily indicate that an intersection should be signalized. Instead, Warrant 3 is used as a metric in combination with peak hour traffic operations and a review of traffic characteristics to determine if an intersection should be signalized.

The peak hour volume criteria, Warrant 3, is satisfied for the intersection of East D Street/Copeland Street for all study scenarios, both without and with the addition of project-generated traffic. The calculations are provided in Appendix C.

Design Complexities

Given the current right-of-way constraints, power lines and future lanes on D Street, the design of a traffic signal at East D Street/Copeland Street will require design exceptions for pole placement.

Proportional Share

Since signalization of the intersection of East D Street/Copeland Street would be necessary to achieve acceptable operations under Future Conditions and since the peak hour traffic signal warrant is satisfied under Future Conditions, it is recommended that the proposed project pay a proportional share of the cost of signalizing the intersection.

The proportional share is based on the ratio of project-generated traffic compared to projected overall growth in traffic at the intersection. It is estimated that the project would contribute 5.4 percent of future traffic growth, and therefore should contribute 5.4 percent of the traffic signal cost. The proportional share calculations are provided in Appendix D.

Recommendation – It is recommended that the project applicant pay a proportional-share of 5.4 percent of the cost of installing a traffic signal at the intersection of D Street/Copeland Street.

Access and Circulation

The on-site parking lots would be accessed by two driveways on Weller Street. One is to be located approximately 190 feet south of East Washington Street and the other 220 feet north of East D Street. The proposed internal street, or "transverse street" would provide connectivity between Weller Street and Copeland Street. This internal street is consistent with the on-site circulation envisioned in the *Petaluma SMART Rail Station Areas: TOD Master Plan* and is planned to continue through the parcel to the east to connect to the SMART station.

Turn Lane Warrants

The need for left-turn and right-turn lanes at the proposed Internal Street intersections with Weller Street and Copeland Street was evaluated based on criteria contained in the *Intersection Channelization Design Guide*, NCHRP Report No. 279, Transportation Research Board, 1985, as well as a more recent update of the methodology developed by the Washington State Department of Transportation. The NCHRP report references a methodology developed by M. D. Harmelink that includes equations that can be applied to expected or actual traffic volumes in order to determine the need for a left-turn pocket based on safety issues. It was determined that under worst-case Future plus Project conditions, dedicated turn lanes would not be warranted on either Weller Street or Copeland Street at their intersections with the Internal Street. The left-turn warrant calculations are provided in Appendix E. Since traffic conditions at the project driveways would be similar to the conditions at these Internal Street intersections, it is expected that neither right-turn nor left-turn lanes would be necessary at the two project driveways.

Sight Distance

At unsignalized intersections and driveways, a substantially clear line of sight should be maintained between the driver of a vehicle waiting at the crossroad and the driver of an approaching vehicle. Adequate time must be provided for the waiting vehicle to either cross, turn left, or turn right, without requiring the through traffic to radically alter their speed. Setback for the driver on the crossroad shall be a minimum of 15 feet, measured from the edge of the traveled way.

Sight distance along Copeland Street and Weller Street at the transverse road and the two driveways on Weller Street was evaluated based on sight distance criteria contained in the *Highway Design Manual* published by Caltrans. The recommended sight distance at intersections of public streets is based on corner sight distances, which uses the approach travel speed as the basis for determining the recommended sight distance, while stopping sight distance is used at private driveway approaches to a public roadway. The stopping sight distance needed for a following driver to stop if there is a vehicle waiting to turn into a side street or driveway is evaluated based on stopping sight distance criterion and the approach speed on the major street.

Sight distance at the intersections of Copeland Street/Transverse Street and Weller Street/Transverse Street as well as the two project driveways along Weller Street were electronically measured on the site plan. Based on a design speed of 25 miles per hour, the minimum corner sight distance is 275 feet at the transverse street intersections, while the stopping sight distance needed is 150 feet at all locations evaluated.

The minimum required stopping sight distances were met at the two project driveways, as well as the intersections of the transverse street with Copeland Street and Weller Street. Corner sight distances were met to the right and left of the transverse street at Copeland Street, and to the left on Weller Street. Corner sight distance was not met to the right at Weller Street, due to the horizontal curve along the roadway and the location of the building to the north of the transverse street limiting sight lines for motorists turning left onto Weller Street. Landscaping should be kept trimmed back to allow for proper sight lines at all of the locations. It is recommended that southbound left turns from the transverse street onto Weller Street be prohibited.

Finding – Stopping sight distances are expected to be adequate at the transverse street intersections with Weller Street and Copeland Street, as well as at the two project driveways on Weller Street. The minimum corner sight distances would be met at Copeland Street/Transverse Street in both directions, and at Weller Street/Transverse Street for vehicles making westbound right turns. Minimum corner sight distance would not be met for westbound left-turning vehicles at Weller Street/Transverse Street.

Recommendation – Landscaping should be maintained and trimmed back to allow for unobstructed sight lines. Westbound left turns from the transverse street onto Weller Street should be prohibited.

Interaction with Copeland Street Transit Mall

The proposed project frontage along Copeland Street would be across the street from the Copeland Transit Mall. Consideration was therefore given to the proposed project's impact on bus activity and pedestrian crossings. The frequent bus maneuvers on Copeland Street, combined with the increase in pedestrian and bicycle activity, will have a calming effect on traffic on Copeland Street, resulting in reduced speeds and capacity. With the calming effect, it is expected that the future p.m. peak hour volumes of approximately 525 southbound and 400 northbound vehicles would be adequately accommodated on Copeland Street. The mixed-use aspect of the proposed development will help reinforce that Copeland Street is intended to as a low-speed, multimodal-focused "complete street," therefore, the proposed project would not be expected to adversely affect safety and could, in fact, contribute to conditions more in keeping with the City's desired character for the area.

Pedestrian Facilities

Sidewalks

Given the proximity to the site of the Transit Mall, SMART station, downtown, shopping facilities, and restaurants, it is likely that some project patrons and employees will walk, bicycle, and/or utilize transit to travel to and from the project site. Development of the project would include installation of continuous sidewalks along the entire project frontage. This improvement will provide access to the project site, and will also provide a general benefit by closing an existing gap in sidewalks along the north side of Weller Street. Furthermore, the development of the Internal Street will provide a direct route between Downtown Petaluma and the Copeland Transit Mall and SMART Station, benefiting all pedestrians along that route. Wayfinding signage should be provided in the area to direct pedestrians to the SMART station, Copeland Transit Mall, Downtown, and other points of interest.

Crosswalks

Currently there are no marked crosswalks at the Weller Street intersections with Washington Street and D Street. There is an existing uncontrolled midblock crosswalk without any enhancements on Weller Street between Washington Street and D Street which is in close proximity to the future intersection with Transverse Street. Ladder crosswalks are included in the project plans across Weller Street at its intersections with East Washington Street and East D Street. The existing midblock crosswalk is shown on the plans at its currently location, approximately 100 feet north of the intersection with Transverse Street.

Recommendation – The existing midblock crosswalk on Weller Street should be removed with a new ladder-style crosswalk installed on the north leg of the Weller Street/Transverse Street intersection. Pedestrian warning signs and Rectangular Rapid Flashing Beacons (RRFB) or similar warning features should be provided.

On Copeland Street, standard marked crosswalks are provided at the signalized intersection with East Washington Street and the unsignalized intersection with East D Street. Midblock between East Washington Street and East D Street, there are two uncontrolled crosswalks on Copeland Street at the transit mall. The northern midblock crosswalk is supplemented with in-roadway warning lights. The project plans indicate the standard crosswalks at the intersection of Copeland Street/East D Street will be replaced with ladder crosswalks across Copeland Street and continental crosswalks across East D Street. Existing crosswalks across the north and south Copeland Street legs at the transverse street would be restriped. A standard crosswalk would be installed on the transverse street leg at Copeland Street.

Recommendation – Given the level of pedestrian activity anticipated at the intersection of Copeland Street/Transverse Street, pedestrian crossing signs and additional crossing enhancements should be provided on Copeland Street either in the form of curb bulb-outs and/or the installation of a Rectangular Rapid Flashing Beacons (RRFB).

Transverse Street and Mid-Block Crosswalk

The proposed project would include the creation of a street bisecting the site, a transverse street that would connect Weller Street with Copeland Street. The street would be frequented by both bicyclists and pedestrians. A mid-block crosswalk with curb extensions or "bulb-outs" on both sides of the internal street would be provided. Increased pedestrian activity is expected along the street as it would serve those walking to access residential, retail, and the SMART station. The crosswalk would facilitate pedestrian crossings across the internal street and minimize the number of pedestrians crossing at undesignated locations. To provide an additional traffic calming

effect and improve comfort for pedestrians, it is recommended that colored pavement be installed for the midblock crosswalk on the transverse street. The bulb-outs should not necessarily interfere with bicycle travel as the street will have low vehicle volumes traveling at a similar speed to the bicycles. The bulb-outs will help to maintain those slow speeds while creating shorter crossing distance for pedestrians.

Finding – With the proposed installation of continuous sidewalks along the project frontage, as well as the recommended crosswalk modifications and additions, there would be continuous pedestrian facilities between the site and the Copeland Transit Mall, Petaluma SMART Station and Downtown Petaluma.

Recommendation – The applicant should install colored pavement or other similar traffic calming enhancements to the midblock crosswalk on the Transverse Street. Stamped concrete should be avoided given the potential for bicycle activity.

Wayfinding

Since the project is located in close proximity to the downtown and to the Transit Mall and the SMART Station, it would be expected that pedestrian and bicycles in and around the project may be in route to these destinations. Wayfinding signage should be provided to assist these users in locating key destinations.

Recommendation – Wayfinding signage designed to be viewable by pedestrians and bicyclists should be installed to direct users to points of interest such as Downtown and to transit connection points such as the transit mall and SMART. The signage should be located on either end of the Transverse Street, at the two project corners with East D Street and the two project corners with East Washington Street.

Bicycle Facilities

Lanes and Routes

In the *City of Petaluma: Bicycle and Pedestrian Plan*, both Copeland Street and Washington Street along the project frontage are identified for future designation as Class III bicycle routes. Since Class III bicycle routes do not include dedicated on-street bicycle facilities, development of the proposed project is not expected to impact the future implementation of this bicycle route. East D Street, along the project facility is identified in the *City of Petaluma: Bicycle and Pedestrian Plan* for future installation of Class II bicycle lanes. Therefore, frontage improvements along East D Street should be completed in a manner that would not impede future installation of bicycle lanes and would provide adequate width for the bike lanes to be striped at such time as the striping can be installed on adjacent segments.

Given the proximity of the site to the Copeland Transit Mall and SMART station, it is reasonable to assume bicyclists will use the transverse street, Weller Street, and Copeland Street. As indicated on the site plan, Class III bike routes would be designated on Copeland Street, Weller Street, and the transverse street. Shared lane bike markings or "sharrows" should be installed along Copeland Street and, if desired by the City, along Weller Street. The "sharrows" could be enhanced with the addition of a green painted background. The colored pavement or stamped concrete enhancements to the transverse street would serve to indicate a shared street, and the segment should be indicated as a Class III bike route through the use of signage.

The site plan indicates Class II bike lanes would be installed along East D Street between Copeland Street and Weller Street as directed by the *City of Petaluma: Bicycle and Pedestrian Plan*. Consideration was given to Class IV two-way separated bicycle facilities along East D Street. Typically, Class IV separated bike facilities are appropriate on longer sections of streets where vehicle traffic volumes are high and speeds are high, whereas this segment of East D Street has a posted speed limit of 25 miles per hour. Due to the right-of-way constraints at the existing East D Street Bridge over the Petaluma River, bicycle facilities are provided via the bridge deck itself, or bicyclists may walk their bikes on the sidewalk. To the east, the East D Street right-of-way is dedicated to additional lanes for added vehicle capacity. From a crossing perspective, the two-way separated bike facility would result in additional

crossing maneuvers being made by bicyclists in order to access the two-way separated facility, and would require additional crossbikes, or bicycle crosswalks, across East D Street at Weller Street. Given the proximity of the bridge, vehicles travelling in the eastbound direction that yield to a bicycle crossing at the crossbike may result in queuing spillback issues, with vehicles queuing into the drawbridge area. Two-way separated bike facilities for the extent of one or two blocks would provide an inconsistent network of bicycle facilities with physical separations within a small area along the same street, which could be problematic for motorists to interpret and interact with correctly.

Consideration was also given to one-way Class IV facilities along East D Street between Copeland Street and Weller Street. This type of facility would include on-street bike lanes located between the curb and the on-street parking. If the City desires to provide this type of Class IV protected bike lane, the sidewalk "bump-out" section just west of Copeland Street will need to be redesigned to allow for a smoother bike lane transition from the eastern section where there is no on-street parking to the western section where there will be on-street parking.

Finding – The project's site plans include Class II bike lanes on D Street between Copeland Street and Weller Street as directed by the *City of Petaluma: Bicycle and Pedestrian Plan*, therefore, it is consistent with the City's current policy.

Recommendation – The project applicant should install shared lane bike markings or "sharrows" along Copeland Street and, if desired by the City, along Weller Street, and the markings could be enhanced through the use of a green painted background. Bike route signage should be installed on the transverse street. Stamped concrete should be avoided on the transverse street given the potential for bicycle activity. Wayfinding signage should be installed throughout the area to direct bicyclists to points of interest and transit connections.

Bicycle Storage

The Petaluma Zoning Code requires that bicycle parking be provided at a rate of 10 percent of automobile parking spaces required. The project will provide 197 automobile parking spaces, therefore a minimum of 20 bicycle parking spaces should be provided. The site would include development of more than 10,000 square feet of commercial space, and the Zoning Code requires installation of one employee shower to supplement bicycle facilities. However, because the commercial space will be spread out among several smaller buildings, a single shared shower facility may not be appropriate.

Recommendation – Frontage improvements along East D Street should be designed in a manner that would accommodate future installation of planned bicycle lanes.

Recommendation – A minimum of 20 bicycle parking spaces shall be provided. Some type of protected bike parking should be available for employees. Also, some convenient bike parking should be available near retail businesses and restaurants.

Transit

The proposed project would be located in close proximity to both existing and planned local and regional transit routes. With the implementation of recommended pedestrian improvements, continuous pedestrian facilities will connect project site residents, employees and customers with these transit services. Locations within the project site are expected to be no more than one-quarter of a mile of walking distance from the SMART station, and even closer to the Copeland Transit Mall. In general, a walking distance of one-quarter of a mile or less is considered to be desirable in encouraging transit use and maximizing pedestrian access to transit facilities. The proximity to transit services, as well as the variety of both local and regional transit services, is expected to make transit a viable and attractive option to residents, employees, and visitors to the proposed project.

Finding – Transit facilities serving the project site are expected to be adequate.

Conclusions

- The intersection of East D Street/Copeland Street had a collision rate higher than the statewide average for similar facilities. It appears likely that this is generally due to the congested nature of this location.
- Currently, all study intersections operate acceptably during the a.m. and p.m. peak hours.
- Under Future conditions, the study intersections are expected to operate acceptably, except East D Street/Copeland Street, which has been identified for future signalization in the *Central Petaluma Specific Plan*; if signalized, the intersection would operate acceptably.
- The proposed project would generate approximately 732 daily trips, of which 76 trips would be generated during the a.m. peak hour and 95 trips would be generated during the p.m. peak hour.
- The project is expected to result in 43 percent fewer vehicle miles travelled per capita as compared to typical VMT per capita for Sonoma County.
- With the addition of project-generated traffic, the study intersections are expected to continue operating acceptable under Existing and Future project conditions. The East D Street/Copeland Street side street approaches would operate deficiently, though the intersection would operate acceptably overall.
- Stopping and corner sight distances are expected to be adequate at the transverse street intersections with Weller Street and Copeland Street, as well as at the two project driveways on Weller Street, except the minimum corner sight distance would not be met for westbound left-turning vehicles at Weller Street/Transverse Street.
- Left-turn and/or right-turn lanes are not warranted at either of the proposed new internal street intersections or the project driveways.
- With the implementation of the recommended improvements, pedestrian, bicycle and transit facilities are expected to adequately serve the project site.
- The project's site plans include Class II bike lanes on D Street between Copeland Street and Weller Street as directed by the *City of Petaluma: Bicycle and Pedestrian Plan*, therefore, it is consistent with the City's current policy.

Recommendations

- Since the proposed project would contribute to the need for installation of a traffic signal at East D Street/Copeland Street, it is recommended that the project applicant pay a proportional share equal to 5.4 percent of the cost of installation.
- The eastbound East D Street approach at Copeland Street should provide a minimum of 100 feet of left-turn lane storage.
- Given the current right-of-way constraints, power lines and future lanes on D Street, the design of a traffic signal at East D Street/Copeland Street may require design exceptions for pole placement.

- Landscaping should be maintained and trimmed back to allow for unobstructed sight lines. Westbound left turns from the transverse street onto Weller Street should be prohibited.
- The applicant should install colored pavement or other similar traffic calming enhancements to the midblock crosswalk on the Transverse Street. Stamped concrete should be avoided given the potential for bicycle activity.
- The project applicant should install shared bike lane markings or "sharrows", which could be enhanced with green painted backgrounds, along Copeland Street and, if desired by the City, along Weller Street.
- The applicant should install wayfinding signage for pedestrians and bicycles to indicate transit connections and points of interest.
- A minimum of 20 bicycle parking spaces should be provided on-site.

Study Participants and References

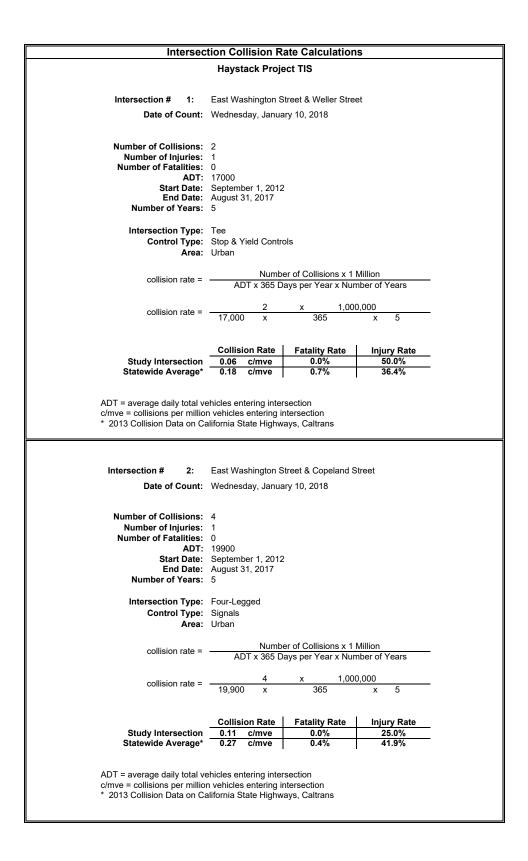
Study Participants

Principal in Charge	Steve Weinberger, PE, PTOE
Associate Principal	Zack Matley, AICP
Transportation Engineer	Smadar Boardman, PE
Assistant Engineer	Kevin Rangel, EIT
Technician/Graphics	Hannah Yung-Boxdell
Editing/Formatting	Katia Wolfe
Quality Control	Dalene J. Whitlock, PE, PTOE

References

2014 Collision Data on California State Highways, California Department of Transportation, 2017 California Manual on Uniform Traffic Control Devices for Streets and Highways, California Department of Transportation, 2012 Central Petaluma Specific Plan, City of Petaluma, 2003 City of Petaluma: Bicycle and Pedestrian Plan: an Appendix to the General Plan 2025, City of Petaluma, 2008 City of Petaluma: General Plan 2025, City of Petaluma, 2008 Final Proposed Updates to the CEQA Guidelines, California Governor's Office of Planning and Research, 2017 Golden Gate Transit, http://goldengatetransit.org/schedules/pages/Bus-Schedules.php Haystack Mixed-Use Project Traffic Impact Study, Whitlock & Weinberger Transportation, Inc., 2009 Highway Capacity Manual, Transportation Research Board, 2010 Highway Design Manual, 6th Edition, California Department of Transportation, 2017 Intersection Channelization Design Guide, National Cooperative Highway Research Program (NCHRP) Report No. 279, Transportation Research Board, 1985 Metropolitan Transportation Committee, http://www.vitalsigns.mtc.ca.gov/daily-miles-traveled#chart-0 Petaluma Municipal Code, Code Publishing Company, 2014 Petaluma SMART Rail Station Areas: TOD Master Plan, Opticos Design, Inc., 2013 Petaluma Transit, http://cityofpetaluma.net/pubworks/schedules.html Sonoma County Transit, http://sctransit.com/ Sonoma County Transportation Authority Travel Demand Model, http://sonomacountyopendatasonomamap.opendata.arcgis.com Sonoma-Marin Area Rail Transit, http://www.sonomamarintrain.org/ Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol, 2012-2017 Trip Generation Manual, 10th Edition, Institute of Transportation Engineers, 2017

PET183


Appendix A

Collision Rate Calculations

This page intentionally left blank

Intersection Collision Rate Calculaions				
Haystack Project TIS				
Intersection # 3:	East D Street & Weller Street			
Date of Count:	Wednesday, January 10, 2018			
Start Date:	2 0 16900 September 1, 2012 August 31, 2017			
	Tee Stop & Yield Controls Urban			
collision rate =	Number of Collisions x 1 Million			
	ADT x 365 Days per Year x Number of Years			
collision rate =	6	x 1,000		
	16,900 x	365	x 5	
	Collision Rate	Fatality Rate	Injury Rate	
Study Intersection	0.19 c/mve	0.0% 0.7%	33.3% 36.4%	
Statewide Average*	0.18 c/mve	0.7%	36.4%	
ADT = average daily total vehicles entering intersection c/mve = collisions per million vehicles entering intersection * 2013 Collision Data on California State Highways, Caltrans				
Intersection # 4:	East D Street & Copeland Street			
Date of Count:	Wednesday, Janua	ry 10, 2018		
Start Date:	3 0 17000 September 1, 2012 August 31, 2017			
	Four-Legged Stop & Yield Controls Urban			
collision rate =	Number of Collisions x 1 Million ADT x 365 Days per Year x Number of Years			
collision rate =	13 17,000 x	x 1,000 365	0,000 x 5	
	Collision Rate	Fatality Rate	Injury Rate	
Study Intersection Statewide Average*	0.42 c/mve 0.15 c/mve	0.0% 1.0%	23.1% 41.9%	
ADT = average daily total vehicles entering intersection c/mve = collisions per million vehicles entering intersection * 2013 Collision Data on California State Highways, Caltrans				

Appendix **B**

Intersection Level of Service Calculations

This page intentionally left blank

HCM 2010 TWSC	
1: Weller St. & East Washington St.	

HCM 2010 Signalized Intersection Summa	ary
2: Copeland St. & East Washington St.	

03/20/2019

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	≜ ₽	LDIT	1100	1	HDE	1
Traffic Vol, veh/h	768	25	0	744	0	15
				744		
Future Vol, veh/h	768	25	0		0	15
Conflicting Peds, #/hr	0	9	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	1.1	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	# 0	-		0	0	-
Grade, %	0			0	0	
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	844	27	0	818	0	16
Major/Minor N	lajor1	N	Najor2	Ν	Minor1	
Conflicting Flow All	0	0			-	445
Stage 1	-	0				44J
Stage 2	-	-		-	-	-
Critical Hdwy		-		-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-		-		-	-
Follow-up Hdwy			-		-	3.32
			0		0	561
Pot Can-1 Manouvor			0		0	
Pot Cap-1 Maneuver				-		
Stage 1		-				
Stage 1 Stage 2	-	-	0	-	0	
Stage 1 Stage 2 Platoon blocked, %				-	0	
Stage 1 Stage 2	-	-			-	- 557
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver	-	-	0		_	
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	-	-	-	-	-	557 -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	-	•	-		-	557 - -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	-	-	-	-	-	557 -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	-	•	-		-	557 - -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	-	•			-	557 - -
Stage 1 Stage 2 Platon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	- - - - - EB	•	0 - - - - - - -		- - - - NB	557 - -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	-	•			- - - NB 11.7	557 - -
Stage 1 Stage 2 Platon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	- - - - - EB	•	0 - - - - - - -		- - - - NB	557 - -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	- - - - EB 0	•	0 - - - - - - -		- - - NB 11.7	557 - -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	- - - - EB 0	•	0 - - - - - - -		- - - NB 11.7	557 - -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	- - - - EB 0	- - - - - - -	0 - - - - - - 0	· · ·	- - - - - - - - - - - - - - - - - - -	557 - -
Stage 1 Stage 2 Platon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	- - - - EB 0	- - - - - - - - - - - - - - - - - - -	0 - - - - - - - 0 - - - -	- - - - - - - -	- - - - - - - - - - - - - - - - - - -	557 - -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	- - - - EB 0	- - - - - - - - - - - - - - - - - - -	0 - - - - - - 0 - - - - -	- - - - - - - - -	- - - - - - - - - - - - - - - - - - -	557 - -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	- - - - EB 0	- - - - - - - - - - - - - - - - - - -	0 - - - - - 0 - - - - -	- - - - - - - - -	- - - 11.7 B WBT - -	557 - -
Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	- - - - EB 0	- - - - - - - - - - - - - - - - - - -	0 - - - - - - 0 - - - - -	- - - - - - - - -	- - - - - - - - - - - - - - - - - - -	557 - -

Traffic Impact Study for Haystack Pacifica Existing AM Peak Synchro 10 Report W-Trans

03/20/2019

	≯	-	\mathbf{r}	*	-	*	1	†	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	۲	≜ †⊅		٦	≜ †⊅		<u> </u>	4Î			\$	
Traffic Volume (veh/h)	0	774	12	155	725	6	20	0	165	4	0	
Future Volume (veh/h)	0	774	12	155	725	6	20	0	165	4	0	
Number	5	2	12	1	6	16	3	8	18	7	4	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.98	0.99		0.99	0.99		1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow, veh/h/ln	1863	1684	1900	1863	1640	1900	1863	1863	1900	1900	1863	190
Adj Flow Rate, veh/h	0	860	12	172	806	7	22	0	27	4	0	
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	0	1	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.0
Percent Heavy Veh, %	2	13	13	2	16	16	2	2	2	2	2	0.
Cap, veh/h	2	1332	19	647	2589	22	199	0	143	168	0	
Arrive On Green	0.00	0.41	0.41	0.36	0.82	0.82	0.09	0.00	0.09	0.09	0.00	0.0
Sat Flow, veh/h	1774	3229	45	1774	3164	27	1399	0.00	1568	1128	0.00	0.
Grp Volume(v), veh/h	0	426	446	172	397	416	22	0	27	4	0	
				1774	1558	1634	1399		1568			
Grp Sat Flow(s), veh/h/ln	1774 0.0	1600 23.9	1674 23.9	7.6	7.0	7.0	0.0	0.0	1568	1128 0.3	0.0	C
Q Serve(g_s), s												
Cycle Q Clear(g_c), s	0.0	23.9	23.9	7.6	7.0	7.0	1.3	0.0	1.8	2.1	0.0	(
Prop In Lane	1.00		0.03	1.00	1075	0.02	1.00		1.00	1.00		0.
Lane Grp Cap(c), veh/h	2	660	691	647	1275	1337	199	0	143	168	0	
V/C Ratio(X)	0.00	0.65	0.65	0.27	0.31	0.31	0.11	0.00	0.19	0.02	0.00	0.
Avail Cap(c_a), veh/h	63	660	691	647	1275	1337	475	0	452	434	0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Upstream Filter(I)	0.00	1.00	1.00	0.88	0.88	0.88	1.00	0.00	1.00	1.00	0.00	0.
Uniform Delay (d), s/veh	0.0	26.3	26.3	25.0	2.5	2.5	46.8	0.0	47.0	48.0	0.0	C
Incr Delay (d2), s/veh	0.0	4.8	4.6	0.1	0.6	0.5	0.2	0.0	0.5	0.0	0.0	C
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C
%ile BackOfQ(50%),veh/In	0.0	11.4	11.9	3.7	3.2	3.3	0.6	0.0	0.8	0.1	0.0	C
LnGrp Delay(d),s/veh	0.0	31.2	31.0	25.1	3.0	3.0	47.0	0.0	47.5	48.0	0.0	C
LnGrp LOS		С	С	С	A	A	D		D	D		
Approach Vol, veh/h		872			985			49			4	
Approach Delay, s/veh		31.1			6.9			47.3			48.0	
Approach LOS		С			А			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	45.9	50.8		15.3	0.0	96.7		15.3				
Change Period (Y+Rc), s	45.9	4.6		5.1	4.0	* 5		* 5.1				
Max Green Setting (Gmax), s	19.0	46.2		32.1	4.0	* 62		* 32				
Max Q Clear Time (q c+11), s	9.6	40.2 25.9		32.1 4.1	4.0	9.0		3.8				
Green Ext Time (g_c+11), s	9.6	25.9		4.1	0.0	9.0		3.8 0.1				
4 = 7	0.2	ö.2		0.0	0.0	10.1		U. I				
Intersection Summary												
HCM 2010 Ctrl Delay			19.0									
HCM 2010 LOS			В									
Notes												

Traffic Impact Study for Haystack Pacifica Existing AM Peak

HCM 2010 TWSC

3: East D St. & Weller St.

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्भ	4Î		۰Y	
Traffic Vol, veh/h	19	730	719	13	2	19
Future Vol, veh/h	19	730	719	13	2	19
Conflicting Peds, #/hr	0	0	0	11	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	21	811	799	14	2	21

Major/Minor IV	najor i	Ν	najor2		Minor2	
Conflicting Flow All	824	0	-	0	1670	817
Stage 1	-	-	-	-	817	-
Stage 2	-	-	-	-	853	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	806	-	-		106	376
Stage 1	-	-	-		434	-
Stage 2	-	-	-	-	418	-
Platoon blocked, %		-	-			
Mov Cap-1 Maneuver	799				99	373
Mov Cap-2 Maneuver	-	-	-	-	99	-
Stage 1	-	-	-	-	409	-
Stage 2		-	-	-	414	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		18.2	
HCM LOS					С	
Minor Lane/Major Mvmt	ł	EBL	EBT	WBT	WRP	SBLn1
Capacity (veh/h)		799	LDI	WDT	WDI	295
HCM Lane V/C Ratio		0.026				0.079
TIGIVI Lane V/C RallO		0.020				0.079

0.3

9.6 0 - - 18.2

A A - - C

0.1

HCM 2010 TWSC 4: Copeland St. & East D St.

4.5

17

60

Major1

680

ሻ ቡ

143 598

143 598

0

Intersection

Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # -

Traffic Vol, veh/h

Future Vol, veh/h

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Grade, %

Mvmt Flow

Major/Minor

Sign Control

EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR 4 4 **↔** 2 2 573 37 1 11 160 0 3 1 2 573 37 0 1 3 11 2 160 0 17 1 11 11 0 1 0 6 6 0 Free Free Free Free Free Free Stop Stop Stop Stop Stop Stop - None - - None - - None - - None 0 -0 -0 -0 -0 0 0 92 92 92 92 92 92 92 92 92 92 92 92 92 2 2 2 2 2 2 2 2 2 2 2 2 2 155 650 1 1 3 12 2 174 2 623 40 0 Major2 Minor1 Minor2 0 1703 1651 668 1638 1631 661 0 0 657 0

Stage 1		-			-	-		967	967		664	664		
Stage 2	-	-	-		-	-	-	736	684	-	974	967	-	
Critical Hdwy	4.12	-	-		4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-		-		-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-		-		-	-	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	-	-		2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	912	-	-		931	-	-	72	99	458	80	101	462	
Stage 1	-	-	-		-	-	-	306	333	-	450	458	-	
Stage 2	-		-		-	-	-	411	449	-	303	333	-	
Platoon blocked, %		-	-			-	-							
Mov Cap-1 Maneuver	899	-	-		926	-	-	38	80	452	66	82	455	
Mov Cap-2 Maneuver	-	-	-		-	-	-	38	80	-	66	82	-	
Stage 1	-		-		-	-	-	252	274	-	367	450	-	
Stage 2	-	-	-		-	-	-	252	441	-	246	274	-	
Approach	EB				WB			NB			SB			
HCM Control Delay, s	1.9				0			22.6			31.3			
HCM LOS								С			D			
Minor Lane/Major Mvm	t I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1					
Capacity (veh/h)		209	899	-	-	926	-	-	319					
HCM Lane V/C Ratio		0.021	0.173	-	-	0.002	-	-	0.589					
HCM Control Delay (s)		22.6	9.8	-	-	8.9	0	-	31.3					
HCM Lane LOS		С	A	-	-	А	Α		D					

0

3.5

0.1 0.6 - -

Traffic Impact Study for Haystack Pacifica Existing AM Peak

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

03/20/2019

Traffic Impact Study for Haystack Pacifica Existing AM Peak

HCM 95th %tile Q(veh)

Synchro 10 Report W-Trans

03/20/2019

HCM 2010 TWSC	
1: Weller St. & East Washington St.	

HCM 2010 Signalized Intersection Summary 2: Copeland St. & East Washington St.

03/08/2018

Intersection Int Delay, s/veh Configurations Trafic Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	Free -	EBR 36 36 11 Free None - - - - - 2 2 39	WBL 0 0 Free - - - 92 2 0	WBT *** 844 844 0 Free None - 0 0 0 92 2 917	NBL 0 0 0 Stop - - 0 0 0 92 2 0	NBR 36 36 0 Stop None 0 - - 92 2 2 39
Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	EBT 782 782 782 0 Free - - - - - - - - - - - - -	36 36 11 Free None - - 92 2 39	0 0 Free - - - - 92 2	♦↑↑ 844 844 0 Free None - 0 0 0 92 2	0 0 Stop - - 0 0 92 2	**************************************
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	↑► 782 782 782 782 782 700 Free -	36 36 11 Free None - - 92 2 39	0 0 Free - - - - 92 2	♦↑↑ 844 844 0 Free None - 0 0 0 92 2	0 0 Stop - - 0 0 92 2	**************************************
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	↑► 782 782 782 782 782 700 Free -	36 36 11 Free None - - 92 2 39	0 0 Free - - - - 92 2	♦↑↑ 844 844 0 Free None - 0 0 0 92 2	0 0 Stop - - 0 0 92 2	7 36 36 0 Stop None 0 - - - 92 2
Traffic Vol, veh/h Future Vol, veh/h Future Vol, veh/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	782 782 782 70 Free	36 11 Free None - - 92 2 39	0 Free - - - - 92 2	844 844 0 Free None - 0 0 0 92 2	0 0 Stop - - 0 0 0 92 2	36 36 0 Stop None 0 - - - 92 2
Future Vol, veh/h Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	782 - 0 Free - - - - - - - - - - - - - - - - - -	36 11 Free None - - 92 2 39	0 Free - - - - 92 2	844 0 Free None 0 0 0 92 2	0 0 Stop - - 0 0 0 92 2	36 0 Stop None 0 - - - 92 2
Conflicting Peds, #/h Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	- 0 Free - - - - - - - - - - - - - - - - - -	11 Free None - - - 92 2 39	0 Free - - - 92 2	0 Free None - 0 0 92 2	0 Stop - - 0 0 92 2	0 Stop None 0 - - 92 2
Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	Free 	Free None - - 92 2 39	Free - - - 92 2	Free None 0 0 92 2	Stop - - 0 0 92 2	Stop None 0 - 92 2
RŤ Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	- ge, # 0 0 92 2 850 Major1	None - - 92 2 39	- - - 92 2	None - 0 0 92 2	- 0 0 92 2	None 0 - 92 2
Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	- ge, # 0 92 2 850 Major1	- 92 2 39	- - 92 2	0 0 92 2	0 0 92 2	0 - - 92 2
Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	ge, # 0 0 92 2 850 Major1	- 92 2 39	- 92 2	0 0 92 2	0 0 92 2	- 92 2
Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	0 92 2 850 Major1	92 2 39	- 92 2	0 92 2	0 92 2	- 92 2
Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	92 2 850 Major1	92 2 39	92 2	92 2	92 2	92 2
Heavy Vehicles, % Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	2 850 Major1	2 39	2	2	2	2
Mvmt Flow Major/Minor Conflicting Flow All Stage 1 Stage 2	850 Major1	39		-	-	
Major/Minor Conflicting Flow All Stage 1 Stage 2	Major1		0	917	0	
Conflicting Flow All Stage 1 Stage 2						- 39
Conflicting Flow All Stage 1 Stage 2						
Conflicting Flow All Stage 1 Stage 2		N	Major2	N	Vinor1	
Stage 1 Stage 2		0	-		-	456
Stage 2	-	0				430
						6.94
Critical Hdwy					1	
Critical Hdwy Stg 1			-			-
Critical Hdwy Stg 2	-	-	-			-
Follow-up Hdwy	-	-	-	-		3.32
Pot Cap-1 Maneuver	-	-	0		0	551
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %				-		
Mov Cap-1 Maneuve	r <u>-</u>		-			546
Mov Cap-2 Maneuve						
Stage 1						
Stage 2						
Stage 2						
Approach	EB		WB		NB	
HCM Control Delay,	s 0		0		12.1	
HCM LOS					В	
A 6		IDI -1	EDT	EDD	MDT	
Minor Lane/Major My	mt l	VBLn1	EBT	EBR	WBT	
Capacity (veh/h)		546			1.1	
HCM Lane V/C Ratio		0.072	-	-	-	
HCM Control Delay (s)	12.1		-		
HCM Lane LOS		В	-	-		
		0.2	-	-		
HCM 95th %tile Q(ve	h)					
HCM 95th %tile Q(ve	h)	0.2				

Traffic Impact Study for Haystack Pacifica Existing PM Peak Synchro 10 Report W-Trans

03/08/2018

	≯	→	\mathbf{r}	1	-		1	- † .	1	1	÷.	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	3	≜t ≽		<u> </u>	≜ 1≽		<u> </u>	4Î			\$	
Traffic Volume (veh/h)	3	805	11	123	801	7	40	0	189	9	0	
Future Volume (veh/h)	3	805	11	123	801	7	40	0	189	9	0	
Number	5	2	12	1	6	16	3	8	18	7	4	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.97	0.99		0.99	0.99		1.
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Adi Sat Flow, veh/h/ln	1863	1793	1900	1863	1698	1900	1863	1863	1900	1900	1863	19
Adj Flow Rate, veh/h	3	885	12	135	880	7	44	0	62	10	0	
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	0	1	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.
Percent Heavy Veh. %	2	6	6	2	12	12	2	2	2	2	2	0.
Cap, veh/h	6	1111	15	809	2559	20	217	0	161	145	0	
Arrive On Green	0.00	0.32	0.32	0.46	0.78	0.78	0.10	0.00	0.10	0.10	0.00	0.
Sat Flow, veh/h	1774	3440	47	1774	3279	26	1399	0.00	1565	846	0.00	0.
Grp Volume(v), veh/h	3	438	459	135	433	454	44	0	62	10	0	
Grp Sat Flow(s), veh/h/ln	د 1774	438	459	1774	433	454	1399	0	02 1565	846	0	
	0.2	29.1	29.1	5.6	1013	1092	0.0	0.0	4.6	846 0.9	0.0	(
Q Serve(g_s), s												
Cycle Q Clear(g_c), s	0.2	29.1	29.1	5.6	10.0	10.0	2.9	0.0	4.6	5.5	0.0	(
Prop In Lane	1.00	550	0.03	1.00	4050	0.02	1.00	0	1.00	1.00	0	0.
Lane Grp Cap(c), veh/h	6	550	576	809	1259	1321	217	0	161	145	0	
V/C Ratio(X)	0.53	0.80	0.80	0.17	0.34	0.34	0.20	0.00	0.39	0.07	0.00	0.
Avail Cap(c_a), veh/h	129	747	782	809	1259	1321	447	0	418	360	0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Upstream Filter(I)	1.00	1.00	1.00	0.85	0.85	0.85	1.00	0.00	1.00	1.00	0.00	0.
Uniform Delay (d), s/veh	61.7	38.3	38.3	19.9	4.1	4.1	51.2	0.0	52.0	54.5	0.0	(
Incr Delay (d2), s/veh	26.2	11.4	10.9	0.0	0.6	0.6	0.3	0.0	1.1	0.1	0.0	(
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
%ile BackOfQ(50%),veh/In	0.1	15.4	16.0	2.7	4.6	4.8	1.4	0.0	2.0	0.3	0.0	(
LnGrp Delay(d),s/veh	87.9	49.7	49.2	19.9	4.7	4.7	51.5	0.0	53.1	54.7	0.0	(
LnGrp LOS	F	D	D	В	А	Α	D		D	D		
Approach Vol, veh/h		900			1022			106			10	
Approach Delay, s/veh		49.6			6.7			52.5			54.7	
Approach LOS		D			А			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	61.5	44.6		17.8	4.4	101.8		17.8				
Change Period (Y+Rc), s	5.0	4.6		5.1	4.0	* 5		* 5.1				
Max Green Setting (Gmax), s	22.0	54.4		32.9	9.0	* 68		* 33				
Max Q Clear Time (q c+l1), s	7.6	31.1		7.5	2.2	12.0		6.6				
Green Ext Time (p_c), s	0.1	9.0		0.0	0.0	11.5		0.4				
Intersection Summary												
HCM 2010 Ctrl Delay			28.3									
HCM 2010 LOS			C									
Notes												

Traffic Impact Study for Haystack Pacifica Existing PM Peak

HCM 2010 TWSC

3: East D St. & Weller St.

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ę	4Î		Y	
Traffic Vol, veh/h	22	891	718	12	4	41
Future Vol, veh/h	22	891	718	12	4	41
Conflicting Peds, #/hr	. 0	0	0	15	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storag	ge,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	23	948	764	13	4	44
Major/Minor	Major1	1	Major2	1	Vinor2	
Conflicting Flow All	792	0	-	0	1780	786
Ctore 1					707	

Conflicting Flow All	792	0	-	0	1/80	/86
Stage 1		-	-	-	786	-
Stage 2	-	-	-	-	994	-
Critical Hdwy	4.12		-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	829	-	-	-	90	392
Stage 1	-	-	-	-	449	-
Stage 2	-	-	-	-	358	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	819	-	-	-	83	387
Mov Cap-2 Maneuver	-	-	-	-	83	-
Stage 1	-	-	-	-	418	-
Stage 2	-	-	-	-	354	-
Approach	FB		WB		SB	
HCM Control Delay, s	0.2		0		19.7	
HCM LOS	0.2		0		C	
110111 200						
		501	FOT			
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		819	-	-	-	292
HCM Lane V/C Ratio		0.029	-	-	-	0.164
HCM Control Delay (s)		9.5	0	-	-	19.7
HCM Lane LOS		A	Α	-	-	С
HCM 95th %tile Q(veh))	0.1				0.6

HCM 2010 TWSC	
4: Copeland St. & East D S	St

Intersection												
Int Delay, s/veh	7											
Movement	EBL	EBT	EBR	WBI	. WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	ţ,			4			4			4	
Traffic Vol, veh/h	184	717	1		587	49	2	2	4	18	2	133
Future Vol. veh/h	184	717	1			49	2	2	4	18	2	133
Conflicting Peds, #/hr	25	0	2			25	5	0	8	8	0	5
Sign Control	Free	Free	Free	Free		Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	110		None	Jiop	Jiop	None	5100	Jiop	None
Storage Length	60		-			-			-			-
Veh in Median Storage		0			- 0			0			0	
Grade, %		0						0			0	
Peak Hour Factor	95	95	95	9!		95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2			2	2	2	2	2	2	2
Mymt Flow	194	755	1			52	2	2	4	19	2	140
WWITCHOW	1/4	155			010	JZ	2	2	т	17	2	140
Major/Minor N	Najor1	_	_	Major)	_	Minor1	_		Minor2	_	
Conflicting Flow All	695	0	0	75		0	1868	1843	766	1826	1817	674
Stage 1	07J	0	U	7.50	, 0	0	1146	1146	700	671	671	074
Stage 2							722	697		1155	1146	
Critical Hdwy	4.12		-	4.12			7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12			4.1.			6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2							6.12	5.52		6.12	5.52	
	2.218			2.21		-	3.518	4.018	3.318		4.018	3.318
Pot Cap-1 Maneuver	901			2.210			55	4.010	403	59	4.010	455
Stage 1	701			00.	, -		242	274	403	446	455	+33
Stage 2							418	443		240	274	
Platoon blocked. %							110	J		240	2/4	
Mov Cap-1 Maneuver	882			85			30	57	400	46	59	444
Mov Cap-1 Maneuver	- 002			05.			30	57	400	40	59	
Stage 1							189	213	-	341	445	
Stage 2							283	433		182	213	
Sidge 2							205	-100		102	215	
Approach	EB			WE	3		NB			SB		
HCM Control Delay, s	2.1						61.5			62.1		
HCM LOS	2.1				,		01.5 F			02.1 F		
							1			1		
Minor Lane/Major Mvm	t ľ	VBLn1	EBL	EBT EBF	R WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		72	882		- 852			211				
HCM Lane V/C Ratio		0.117	0.22		0.001			0.763				
HCM Control Delay (s)		61.5	10.2	-	- 9.2	0		62.1				
HCM Lane LOS		F	B		- A	A		F				
HCM 95th %tile Q(veh)		0.4	0.8		- 0	-		5.3				
		0.1	0.0					0.0				

Traffic Impact Study for Haystack Pacifica Existing PM Peak

03/08/2018

Traffic Impact Study for Haystack Pacifica Existing PM Peak

Synchro 10 Report W-Trans

03/08/2018

HCM 2010 TWSC	
1: Weller St. & East Washington St.	

03/22/2018

ons	0.2					
ı	0.3					
ı	EBT	EBR	WBL	WBT	NBL	NBR
ı	≜ ₽	LBIT	TIDE	^	HDE	1
	700	45	0	1026	0	55
1 I	700	45	0	1020	0	55
, #/hr	0	9	0	0	0	0
,	Free	Free	Free	Free	Stop	Stop
	-		-		-	None
		-		-		0
torage	.# 0	-		0	0	
torago	0			0	0	
or	100	100	100	100	100	100
%	2	2	2	2	2	2
10	700	45	0	1026	0	55
	,00	10	0	1020	Ū	00
	Najor1		Major2	1	Minor1	
All	0	0	-	-	-	382
	1.1	-		-	1.1	
		-	-	-		-
	1.1	-		-	1.1	6.94
g 1		-	-	-		-
g 2	1.1				-	
	-	-	-	-		3.32
uver	-	-	0		0	616
		-	0	-	0	-
	-	-	0	-	0	-
%		-		-		
euver	-	-	-	-	-	611
euver			-			
	-	-	-	-	-	-
	-	-	-	-	-	-
	EB		WB		NB	
lay, s	0		0		11.5	
iu _{<i>J</i>} , 5	0		0		B	
					D	
			EDT	500	WDT	
	t I	NBLn1	EBT	EBR	WBT	
or Mvm		611		-	-	
		0.09	-	-		
Ratio					-	
					-	
Ratio		0.3				
			11.5	11.5 -	11.5	11.5

Traffic Impact Study for Haystack Pacifica Future AM Peak Synchro 8 Report W-Trans HCM 2010 Signalized Intersection Summary 2: Copeland St. & East Washington St.

03/22/2018

	≯	-	\mathbf{r}	1	+		1	- † -	1	1	÷.	-
Novement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	٦,	A		٦	≜ †₽		٦	eî 🗍			÷	
Traffic Volume (veh/h)	71	585	99	239	875	49	131	0	240	27	60	3
uture Volume (veh/h)	71	585	99	239	875	49	131	0	240	27	60	3
lumber	5	2	12	1	6	16	3	8	18	7	4	
nitial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.98	1.00		1.00	1.00		1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow, veh/h/ln	1863	1705	1900	1863	1648	1900	1863	1863	1900	1900	1863	190
Adj Flow Rate, veh/h	71	585	99	239	875	49	131	0	240	27	60	3
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	0	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Percent Heavy Veh, %	2	13	13	2	16	16	2	2	2	2	2	
Cap, veh/h	91	732	124	609	1680	94	298	0	324	86	157	6
Arrive On Green	0.05	0.27	0.27	0.34	0.56	0.56	0.21	0.00	0.21	0.21	0.21	0.2
Sat Flow, veh/h	1774	2756	465	1774	3011	169	1298	0	1576	110	765	30
Grp Volume(v), veh/h	71	343	341	239	455	469	131	0	240	117	0	
Grp Sat Flow(s), veh/h/ln	1774	1620	1601	1774	1566	1614	1298	0	1576	1177	0	
2 Serve(q s), s	2.8	13.8	13.9	7.2	12.7	12.7	0.2	0.0	10.0	0.4	0.0	0
Cycle Q Clear(g c), s	2.8	13.8	13.9	7.2	12.7	12.7	10.6	0.0	10.0	10.3	0.0	0
Prop In Lane	1.00		0.29	1.00		0.10	1.00		1.00	0.23		0.2
ane Grp Cap(c), veh/h	91	431	425	609	873	900	298	0	324	305	0	
//C Ratio(X)	0.78	0.80	0.80	0.39	0.52	0.52	0.44	0.00	0.74	0.38	0.00	0.0
Avail Cap(c_a), veh/h	152	486	480	609	873	900	550	0	631	608	0	
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Jpstream Filter(I)	1.00	1.00	1.00	0.68	0.68	0.68	1.00	0.00	1.00	1.00	0.00	0.0
Jniform Delay (d), s/veh	32.8	23.9	24.0	17.5	9.6	9.6	26.4	0.0	26.1	23.8	0.0	0
ncr Delay (d2), s/veh	5.5	14.2	14.7	0.1	1.5	1.5	0.8	0.0	2.5	0.6	0.0	0
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
%ile BackOfQ(50%),veh/In	1.5	7.8	7.9	3.5	5.8	6.0	2.5	0.0	4.6	2.0	0.0	0
nGrp Delay(d),s/veh	38.3	38.2	38.6	17.6	11.2	11.1	27.1	0.0	28.6	24.4	0.0	0
nGrp LOS	D	D	D	В	В	В	С		С	С		
Approach Vol. veh/h		755			1163			371			117	
Approach Delay, s/veh		38.4			12.5			28.1			24.4	
Approach LOS		D			В			С			С	
							_				-	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	29.0	22.6		18.4	7.6	44.0		18.4				
Change Period (Y+Rc), s	5.0	4.0		4.0	4.0	* 5		4.0				
Max Green Setting (Gmax), s	8.0	21.0		28.0	6.0	* 24		28.0				
Max Q Clear Time (g_c+I1), s	9.2	15.9		12.3	4.8	14.7		12.6				
Green Ext Time (p_c), s	0.0	2.5		0.4	0.0	5.2		1.5				
ntersection Summary												
HCM 2010 Ctrl Delay			23.6									
ICM 2010 LOS			C									
Votes												

HCM 2010 TWSC

3: East D St. & Weller St.

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	EDL			VVDR		JDK
Lane Configurations	0	ب	4	05	M	
Traffic Vol, veh/h	9	850	700	25	20	14
Future Vol, veh/h	9	850	700	25	20	14
Conflicting Peds, #/h	r 0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length		-		-	0	-
Veh in Median Storag	ae.# -	0	0	-	0	
Grade, %	-	0	0	-	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	9	850	700	25	20	14
WWINTELLOW		000	700	20	20	14
Major/Minor	Major1	1	Major2	1	Minor2	
Conflicting Flow All	725	0		0	1581	713
Stage 1		-		-	713	
Stage 2		-		-	868	
Critical Hdwy	4.12				6.42	6.22
Critical Hdwy Stg 1					5.42	

Stage 1		-	-	-	713	-	
Stage 2	-	-		-	868	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-		-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218		-	-	3.518	3.318	
Pot Cap-1 Maneuver	878	-	-	-	120	432	
Stage 1	-	-		-	486	-	
Stage 2	-	-	-	-	411	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	878	-	-	-	118	432	
Mov Cap-2 Maneuver	-	-	-	-	118	-	
Stage 1	-	-	-	-	477	-	
Stage 2	-	-	-	-	411	-	

Approach	ED	W/D	CD
Approach	ED	WB	SD
HCM Control Delay, s	0.1	0	31.8
HCM LOS			D

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	878	-	-	- 168	
HCM Lane V/C Ratio	0.01	-		- 0.202	
HCM Control Delay (s)	9.1	0	-	- 31.8	
HCM Lane LOS	А	А	-	- D	
HCM 95th %tile Q(veh)	0	-	-	- 0.7	

HCM 2010 TWSC 4: Copeland St. & East D St.

last a second table as

03/22/2018

ntersection												
nt Delay, s/veh	120)										
lovement	EBL	. EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations					4			4			4	
raffic Vol, veh/h	221		2	2	475	267	1	0	1	110	0	210
uture Vol. veh/h	221		2	2	475	267	1	0	1	110	0	210
Conflicting Peds, #/hr	17		6	6	0	17	1	0	11	11	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
T Channelized			None	-	-	None	-	-	None	-	-	None
storage Length	60) -	-	-		-			-			-
eh in Median Storage	e.# -	. 0	-	-	0	-		0	-	-	0	
Grade, %		. 0	-		0	-		0			0	-
Peak Hour Factor	100) 100	100	100	100	100	100	100	100	100	100	100
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
lymt Flow	221		2	2	475	267	1	0	1	110	0	210
/ajor/Minor	Major1			Major2			Vinor1			Minor2		
Conflicting Flow All	759		0	628	0	0	1788	1832	638	1705	1700	627
Stage 1	137		0	020	-	0	1069	1052	000	630	630	021
Stage 2						-	719	763		1075	1070	
Critical Hdwy	4.12			4.12			7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12			7.12			6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2			-				6.12	5.52		6.12	5.52	
ollow-up Hdwy	2.218			2.218				4.018	3.318		4.018	3 318
ot Cap-1 Maneuver	852		-	954		-	63	76	477	~ 72	92	484
Stage 1				701			268	298		470	475	-
Stage 2			-				420	413		266	298	
latoon blocked. %							120	110		200	270	
Nov Cap-1 Maneuver	840) -		949			28	55	470	~ 56	66	477
Nov Cap-2 Maneuver			-	-			28	55	-	~ 56	66	-
Stage 1							196	218		341	466	
Stage 2							234	406		194	218	
pproach	EB	}		WB			NB			SB		
ICM Control Delay, s	2.8			0			75.6		\$	708.1		
ICM LOS	2.0			0			70.0 F		Ŷ	F		
10111203												
/inor Lane/Major Mvn	nt	NBLn1	EBL	EBT EBR	WBL	WBT	WRP	SBLn1				
Capacity (veh/h)	m	53	840	EDI EDR	949	-	VVDR	133				_
ICM Lane V/C Ratio			0.263		0.002			2.406				
ICM Control Delay (s))	75.6	10.8		8.8	0		5708.1				
ICM Lane LOS	/	75.0 F	10.0 B		0.0 A	A		F				
ICM 95th %tile Q(veh	1)	0.1	1.1		0	-		27.7				
2	7	0.1			0			2				
lata a		_										
lotes : Volume exceeds ca				eeds 300s	+: Com		NIC	<u> </u>	* * *			in platoo

Traffic Impact Study for Haystack Pacifica Future AM Peak Synchro 8 Report W-Trans

03/22/2018

Traffic Impact Study for Haystack Pacifica Future AM Peak

HCM 2010 Signalized Intersection Summary 4: Copeland St. & East D St.

03/23/2018

	≯	-	\mathbf{r}	1	+		1	1	1	1	÷.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	٦.	4Î		٦	4Î		٦	4Î		٦	4Î	
Traffic Volume (veh/h)	221	620	2	2	475	267	1	0	1	110	0	21
Future Volume (veh/h)	221	620	2	2	475	267	1	0	1	110	0	21
Number	7	4	14	3	8	18	5	2	12	1	6	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.96	0.99		0.97	0.97		0.9
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	190
Adj Flow Rate, veh/h	221	620	2	2	475	267	1	0	1	110	0	21
Adj No. of Lanes	1	1	0	1	1	0	1	1	0	1	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	
Cap, veh/h	363	1064	3	424	535	301	220	0	309	409	0	30
Arrive On Green	0.09	0.57	0.57	0.00	0.49	0.49	0.20	0.00	0.20	0.20	0.00	0.2
Sat Flow, veh/h	1774	1855	6	1774	1102	620	1151	0	1540	1372	0	154
Grp Volume(v), veh/h	221	0	622	2	0	742	1	0	1	110	0	21
Grp Sat Flow(s), veh/h/ln	1774	0	1861	1774	0	1722	1151	0	1540	1372	0	154
Q Serve(q s), s	3.0	0.0	11.5	0.0	0.0	20.9	0.0	0.0	0.0	3.7	0.0	6
Cycle Q Clear(q c), s	3.0	0.0	11.5	0.0	0.0	20.9	6.8	0.0	0.0	3.8	0.0	6
Prop In Lane	1.00		0.00	1.00		0.36	1.00		1.00	1.00		1.0
ane Grp Cap(c), veh/h	363	0	1068	424	0	836	220	0	309	409	0	30
V/C Ratio(X)	0.61	0.00	0.58	0.00	0.00	0.89	0.00	0.00	0.00	0.27	0.00	0.6
Avail Cap(c a), veh/h	401	0	1109	552	0	961	353	0	487	567	0.00	48
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.0
Uniform Delay (d), s/veh	11.1	0.0	7.3	7.5	0.0	12.5	23.0	0.0	17.2	18.7	0.0	19
Incr Delay (d2), s/veh	2.3	0.0	0.7	0.0	0.0	9.2	0.0	0.0	0.0	0.3	0.0	2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
%ile BackOfQ(50%),veh/ln	1.9	0.0	6.1	0.0	0.0	11.8	0.0	0.0	0.0	1.4	0.0	3
LnGrp Delay(d),s/veh	13.4	0.0	8.1	7.5	0.0	21.7	23.0	0.0	17.2	19.0	0.0	22
LnGrp LOS	B	0.0	A	A	0.0	C	20.0 C	0.0	B	B	0.0	~~~
Approach Vol, veh/h		843		<u></u>	744	0	0	2			320	
Approach Delay, s/veh		9.5			21.7			20.1			21.3	
Approach LOS		7.5 A			21.7 C			20.1 C			21.3 C	
											C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		14.8	4.1	34.8		14.8	8.8	30.1				
Change Period (Y+Rc), s		4.0	4.0	4.0		4.0	4.0	4.0				
Max Green Setting (Gmax), s		17.0	4.0	32.0		17.0	6.0	30.0				
Max Q Clear Time (g_c+I1), s		8.8	2.0	13.5		8.8	5.0	22.9				
Green Ext Time (p_c), s		0.0	0.0	4.3		1.1	0.1	3.2				
Intersection Summary												
HCM 2010 Ctrl Delay			16.2									
HCM 2010 LOS			В									

Traffic Impact Study for Haystack Pacifica Future AM Peak - Signal at Copeland/D Synchro 8 Report W-Trans HCM 2010 TWSC 1: Weller St. & East Washington St.

03/22/2018

Intersection Int Delay, s/veh					_	_
in Dolay, siven	0.2					
	-					
Movement	EBT	EBR	WBL		NBL	NBR
Lane Configurations	_ ≜ î≽			- ††		1
Traffic Vol, veh/h	1000	34	0	1311	0	35
Future Vol, veh/h	1000	34	0	1311	0	35
Conflicting Peds, #/hr	0	11	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None		None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1000	34	0	1311	0	35
Marian /Missan	Main.1		4-10		No. and	
	Major1 0	0	Major2		Vinor1	528
Conflicting Flow All	-	-		-	-	
Stage 1		1.1	-	1.1		
Stage 2	-		-		-	-
Critical Hdwy	-		-			6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	-	-	0	-	0	495
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-		-	-	490
Mov Cap-2 Maneuver	-	-		-	-	-
Stage 1		-		-	-	-
Stage 2						
Stuge 2						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		12.9	
HCM LOS					В	
	nt l	NBLn1	EBT	EBR	WBT	
Minor Lane/Major Myr		490				
Minor Lane/Major Mvr		470				
Capacity (veh/h)		0.071	-			
Capacity (veh/h) HCM Lane V/C Ratio)	0.071	-			
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	12.9	-	-	-	
Capacity (veh/h) HCM Lane V/C Ratio	,				-	

Traffic Impact Study for Haystack Pacifica Future PM Peak

HCM 2010 Signalized Intersection Summary 2: Copeland St. & East Washington St.

03/22/2018

	≯.	-	\mathbf{F}	1	-		1	†	1	-	÷.	-
Vovement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
ane Configurations	1	≜ †⊅		٦	≜ †⊅		۲	4Î			\$	
Traffic Volume (veh/h)	133	857	45	450	1154	34	114	0	268	65	79	
Future Volume (veh/h)	133	857	45	450	1154	34	114	0	268	65	79	
Number	5	2	12	1	6	16	3	8	18	7	4	
nitial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.96	1.00		1.00	1.00		1.
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Adj Sat Flow, veh/h/ln	1863	1796	1900	1863	1701	1900	1863	1863	1900	1900	1863	19
Adj Flow Rate, veh/h	133	857	45	450	1154	34	114	0	268	65	79	
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	0	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Percent Heavy Veh, %	2	6	6	2	12	12	2	2	2	2	2	
Cap, veh/h	329	877	46	585	1317	39	283	0	408	108	123	Ę
Arrive On Green	0.19	0.27	0.27	0.33	0.41	0.41	0.26	0.00	0.26	0.26	0.26	0.1
Sat Flow, veh/h	1774	3289	173	1774	3201	94	1261	0.00	1576	209	474	2
Grp Volume(v), veh/h	133	444	458	450	582	606	114	0	268	187	0	_
Grp Sat Flow(s), veh/h/ln	1774	1706	1756	1774	1616	1679	1261	0	1576	888	0	
2 Serve(g s), s	5.9	23.3	23.3	20.5	29.9	29.9	0.0	0.0	13.7	6.6	0.0	0
Cycle Q Clear(g_c), s	5.9	23.3	23.3	20.5	29.9	29.9	12.8	0.0	13.7	20.3	0.0	0
Prop In Lane	1.00	23.5	0.10	1.00	27.7	0.06	12.0	0.0	1.00	0.35	0.0	0.2
Lane Grp Cap(c), veh/h	329	455	468	585	665	691	283	0	408	284	0	0.4
//C Ratio(X)	0.40	0.98	0.98	0.77	0.88	0.88	0.40	0.00	0.66	0.66	0.00	0.0
Avail Cap(c_a), veh/h	329	455	468	585	700	728	376	0.00	525	392	0.00	0.0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.(
Jpstream Filter(I)	1.00	1.00	1.00	0.23	0.23	0.23	1.00	0.00	1.00	1.00	0.00	0.0
	32.3	32.7	32.7	27.1	24.4	24.4	29.4	0.00	29.8	32.8	0.0	0.0
Jniform Delay (d), s/veh ncr Delay (d2), s/veh	0.3	36.8	36.3	1.3	4.0	24.4	29.4	0.0	29.8	32.8	0.0	0
	0.3	30.8 0.0	30.3 0.0	0.0	4.0	0.0	0.7	0.0	0.0	0.0	0.0	0
nitial Q Delay(d3),s/veh	2.9	15.5	15.9	10.2		14.5						
%ile BackOfQ(50%),veh/In		15.5 69.6	69.0	28.4	14.0 28.4	28.3	2.6	0.0	6.1 31.3	4.6 34.8	0.0	0
_nGrp Delay(d),s/veh	32.6						30.1	0.0			0.0	0
_nGrp LOS	С	E	E	С	C	С	С		С	С	107	
Approach Vol, veh/h		1035			1638			382			187	
Approach Delay, s/veh		64.6			28.4			30.9			34.8	
Approach LOS		E			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	34.7	28.0		27.3	21.7	41.0		27.3				
Change Period (Y+Rc), s	5.0	4.0		4.0	5.0	* 4		4.0				
Max Green Setting (Gmax), s	23.0	24.0		30.0	9.0	* 39		30.0				
Max Q Clear Time (q c+l1), s	22.5	25.3		22.3	7.9	31.9		15.7				
Green Ext Time (p_c), s	0.1	0.0		0.5	0.0	5.1		1.6				
ntersection Summary												
HCM 2010 Ctrl Delay			40.6									
HCM 2010 Clif Delay			40.6 D									
			U									
Votes												

HCM 2010 TWSC 3: East D St. & Weller St.

Intersection						
Int Dolou, oluoh	0.8					
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ન	¢Î		Y	
Traffic Vol, veh/h	1	1000	915	25	13	25
Future Vol, veh/h	1	1000	915	25	13	25
Conflicting Peds, #/hr	0	0	0	15	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length	-	-		-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %		0	0		0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	1	1000	915	25	13	25
WWITH THOW		1000	/15	23	13	20
	Major1		Major2		Minor2	
Conflicting Flow All	955	0	-	0	1945	943
Stage 1	-	-	-	-	943	-
Stage 2	-	-	-	-	1002	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-		-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	720	-	-	-	71	318
Stage 1	-	-		-	379	-
Stage 2	-	-	-	-	355	-
Platoon blocked, %				-		
Mov Cap-1 Maneuver	711	-		-	69	314
Mov Cap-2 Maneuver	-				69	-
					373	
Stage 1						
Stage 1	-	-	-			
Stage 1 Stage 2	-	-	-	-	351	
Stage 2			-	-	351	
	- - EB	-	- - WB	-		
Stage 2		•	- - WB 0	-	351	
Stage 2 Approach	EB				351 SB	
Stage 2 Approach HCM Control Delay, s	EB			•	351 SB 39.4	
Stage 2 Approach HCM Control Delay, s HCM LOS	<u>EB</u> 0	-	0		351 SB 39.4 E	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	<u>EB</u> 0	EBL	0 EBT	WBT	351 SB 39.4 E WBR	SBLn1
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	<u>EB</u> 0	711	0 EBT	WBT -	351 SB 39.4 E WBR	SBLn1 142
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	<u>EB</u> 0	711 0.001	0 EBT -	WBT -	351 SB 39.4 E WBR	SBLn1 142 0.268
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	<u>EB</u> 0	711 0.001 10.1	0 EBT - - 0	WBT - -	351 SB 39.4 E WBR - -	SBLn1 142 0.268 39.4
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	EB 0	711 0.001	0 EBT -	WBT -	351 SB 39.4 E WBR	SBLn1 142 0.268

Traffic Impact Study for Haystack Pacifica Future PM Peak Synchro 8 Report W-Trans

03/22/2018

HCM 2010 TWSC
4: Copeland St. & East D St.

03/22/2018

nt Delay, s/veh	357.1											
Novement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations		i îr			4			4			4	
Traffic Vol, veh/h	229		1	1	600	190	3	1	3	141	0	330
Future Vol. veh/h	229		1	1	600	190	3	1	3	141	0	330
Conflicting Peds, #/hr	25		2	2	000	25	5	0	8	8	0	5
Sign Control	Free		Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	1100		None	1100	1100	None	Jiop		None	Jiop	5100	None
Storage Length	60		-			-			-			-
Veh in Median Storage					0			0			0	
Grade, %	., "	0			0			0			0	
Peak Hour Factor	100	-	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2		2	2	2	2	2	2	2	2	2	2
Nymt Flow	229		1	1	600	190	3	1	3	141	0	330
	227	121		1	000	170	- 5	1	- 5	171	0	550
Major/Minor	Major1			Major2	_		Vinor1	_		Vinor2		
Conflicting Flow All	815		0	724	0	0	2049	1999	732	1912	1904	725
Stage 1	015	0	0	724	0	0	1182	1182	132	722	722	125
Stage 2							867	817		1190	1182	
Critical Hdwy	4.12			4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12			4.12			6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2		-	-				6.12	5.52		6.12	5.52	
Follow-up Hdwy	2.218			2.218			3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	812			2.210			41	4.018	421	~ 52	4.018	425
Stage 1	012			0/9		-	231	263	421	~ 52 418	431	420
		-	-	-			348	203		229	263	
Stage 2 Platoon blocked. %							340	340		229	203	
	795			878			6	42	417	~ 38	48	414
Nov Cap-1 Maneuver	/95	-		8/8	-		6	42	417	~ 38	48	414
Nov Cap-2 Maneuver							0 164	42		~ 38	48	-
Stage 1		-					70	381		160	421	
Stage 2			-				70	301	-	100	10/	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.7			0		¢	457.2		¢ .	1670.8		
HCM LOS	Z.1			0		2	437.2 F		\$	1070.8 F		
							г			F		
Vinor Lane/Major Mvm	nt	NBLn1	EBL	EBT EBR	WBL	WBT	WBRS	SBI n1				
Capacity (veh/h)	n	13	795	EDI EDR	878	VVDI	WDR.	104				
HCM Lane V/C Ratio		0.538	0.288		0.001			4.529				
HCM Control Delay (s)		0.538 \$ 457.2	0.288		9.1	- 0		4.529				
		\$ 407.2 F	11.3 B		9.1 A	A	÷	1070.8 F				
HCM Lane LOS HCM 95th %tile Q(veh)	1.3	В 1.2		A 0	A		49.4				
Notes	,	1.3	1.2		0			47.4				

Traffic Impact Study for Haystack Pacifica Future PM Peak Synchro 8 Report W-Trans HCM 2010 Signalized Intersection Summary 4: Copeland St. & East D St.

	≯	-	\rightarrow	1	-		1	†	1	1	+	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	ĥ		۲.	4Î		٦	f,		٦	f,	
Traffic Volume (veh/h)	229	721	1	1	600	190	3	1	3	141	0	330
Future Volume (veh/h)	229	721	1	1	600	190	3	1	3	141	0	330
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.95	0.99		0.99	0.99		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	229	721	1	1	600	190	3	1	3	141	0	330
Adj No. of Lanes	1	1	0	1	1	0	1	1	0	1	1	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	309	1052	1	328	638	202	155	99	297	450	0	378
Arrive On Green	0.09	0.57	0.57	0.00	0.48	0.48	0.24	0.24	0.24	0.24	0.00	0.24
Sat Flow, veh/h	1774	1860	3	1774	1336	423	1039	408	1224	1393	0	1557
Grp Volume(v), veh/h	229	0	722	1	0	790	3	0	4	141	0	330
Grp Sat Flow(s), veh/h/ln	1774	0	1862	1774	0	1760	1039	0	1632	1393	0	1557
Q Serve(q s), s	3.7	0.0	17.3	0.0	0.0	26.8	0.2	0.0	0.1	5.4	0.0	12.8
Cycle Q Clear(g_c), s	3.7	0.0	17.3	0.0	0.0	26.8	13.0	0.0	0.1	5.5	0.0	12.8
Prop In Lane	1.00	0.0	0.00	1.00	0.0	0.24	1.00	0.0	0.75	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	309	0	1054	328	0	839	155	0	396	450	0	378
V/C Ratio(X)	0.74	0.00	0.69	0.00	0.00	0.94	0.02	0.00	0.01	0.31	0.00	0.87
Avail Cap(c a), veh/h	318	0	1054	438	0	866	167	0	415	465	0.00	395
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	13.7	0.0	9.7	9.7	0.0	15.6	29.2	0.0	18.1	20.2	0.0	22.9
Incr Delay (d2), s/veh	8.8	0.0	1.9	0.0	0.0	17.7	0.0	0.0	0.0	0.4	0.0	18.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.8	0.0	9.4	0.0	0.0	17.1	0.0	0.0	0.0	2.1	0.0	7.4
LnGrp Delay(d),s/veh	22.5	0.0	11.6	9.7	0.0	33.3	29.2	0.0	18.1	20.6	0.0	41.3
LnGrp LOS	22.J	0.0	B	A	0.0	00.0 C	27.2 C	0.0	B	20.0 C	0.0	- 1.3 D
Approach Vol, veh/h		951			791	0		7			471	
Approach Delay, s/veh		14.2			33.3			22.9			35.1	
Approach LOS		14.Z B			33.3 C			22.9 C			55.1 D	
		-			-			-			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		19.3	4.1	39.6		19.3	9.7	34.1				
Change Period (Y+Rc), s		4.0	4.0	4.0		4.0	4.0	4.0				
Max Green Setting (Gmax), s		16.0	4.0	33.0		16.0	6.0	31.0				
Max Q Clear Time (g_c+I1), s		15.0	2.0	19.3		14.8	5.7	28.8				
Green Ext Time (p_c), s		0.0	0.0	4.5		0.3	0.0	1.2				
Intersection Summary												
HCM 2010 Ctrl Delay			25.5									
HCM 2010 LOS			С									

Traffic Impact Study for Haystack Pacifica Future PM Peak - Signal at Copeland/D Synchro 8 Report

03/23/2018

HCM 2010 TWSC	
1: Weller St. & East Washington St.	

HCM 2010 Signalized Intersection Summary 2: Copeland St. & East Washington St.

03/20/2019

0.2 EBT EBR WBL WBT ns 11, 14	
	NBL NBR
IIS TH TT	
7/0 20 0 700	1
768 30 0 758	0 26
768 30 0 758 #/hr 0 9 0 0	0 26
Free Free Free Free	Stop Stop
- None - None	
	- None - 0
prage, # 0 0	- 0
0 0	0 -
91 91 91 91	91 91
6 2 2 2 2	2 2
844 33 0 833	0 29
844 33 0 833	0 29
Major1 Major2 I	Vinor1
II 0 0	- 448
	- 6.94
1	
2	
	- 3.32
ver 0 -	0 558
0 -	0 -
0 -	0 -
%	
Jver	- 554
Jver	
	ND
EB WB	NB
ay, s 0 0	11.9
	В
Mvmt NBLn1 EBT EBR	WBT
554	-
atio 0.052	-
ay (s) 11.9	-
В	-
(veh) 0.2	-
ay (s) 11.9 - B -	-

Traffic Impact Study for Haystack Pacifica	
Existing plus Project AM Peak	

Synchro 10 Report W-Trans

03/20/2019

	≯	-	\mathbf{r}	*	-		1	- † -	1	1	÷.	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
Lane Configurations	٦	↑1 ,-		٦	A1⊅		٦	ef 👘			\$	
Traffic Volume (veh/h)	0	785	12	159	725	6	34	0	165	4	0	
Future Volume (veh/h)	0	785	12	159	725	6	34	0	165	4	0	
Number	5	2	12	1	6	16	3	8	18	7	4	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.98	0.99		0.99	0.99		1.
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Adj Sat Flow, veh/h/ln	1863	1684	1900	1863	1640	1900	1863	1863	1900	1900	1863	19
Adj Flow Rate, veh/h	0	872	12	177	806	7	38	0	27	4	0	
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	0	1	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.
Percent Heavy Veh, %	2	13	13	2	16	16	2	2	2	2	2	0.
Cap, veh/h	2	1332	18	636	2570	22	208	0	153	176	0	
Arrive On Green	0.00	0.41	0.41	0.36	0.81	0.81	0.10	0.00	0.10	0.10	0.00	0.
Sat Flow, veh/h	1774	3229	44	1774	3164	27	1400	0.00	1569	1145	0.00	0.
Grp Volume(v), veh/h	0	432	452	177	397	416	38	0	27	4	0	
Grp Sat Flow(s), veh/h/ln	1774	1600	1674	1774	1558	1634	1400	0	1569	1145	0	
Q Serve(g_s), s	0.0	24.3	24.3	8.0	7.2	7.2	0.2	0.0	1.8	0.3	0.0	(
Cycle Q Clear(g_c), s	0.0	24.3	24.3	8.0	7.2	7.2	2.3	0.0	1.8	2.1	0.0	
Prop In Lane	1.00		0.03	1.00		0.02	1.00		1.00	1.00		0
Lane Grp Cap(c), veh/h	2	660	691	636	1265	1327	208	0	153	176	0	
V/C Ratio(X)	0.00	0.65	0.65	0.28	0.31	0.31	0.18	0.00	0.18	0.02	0.00	0.
Avail Cap(c_a), veh/h	63	660	691	636	1265	1327	475	0	452	434	0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Upstream Filter(I)	0.00	1.00	1.00	0.88	0.88	0.88	1.00	0.00	1.00	1.00	0.00	0.
Uniform Delay (d), s/veh	0.0	26.5	26.5	25.6	2.7	2.7	46.6	0.0	46.4	47.3	0.0	(
Incr Delay (d2), s/veh	0.0	5.0	4.8	0.1	0.6	0.5	0.3	0.0	0.4	0.0	0.0	1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
%ile BackOfQ(50%).veh/ln	0.0	11.6	12.1	3.9	3.2	3.3	1.1	0.0	0.8	0.1	0.0	(
LnGrp Delay(d),s/veh	0.0	31.5	31.3	25.7	3.2	3.2	46.9	0.0	46.8	47.4	0.0	(
LnGrp LOS		С	С	С	A	A	D		D	D		
Approach Vol. veh/h		884			990			65			4	
Approach Delay, s/veh		31.4			7.2			46.9			47.4	
Approach LOS		51.4 C			7.2 A			40.7 D			ч <i>л</i> .ч D	
	1	2	3	4	5	/	7	8			U	
Timer Assigned Phs	1	2	3	4	5	6	/	8				
Phs Duration (G+Y+Rc), s	45.2	50.8		16.0	0.0	96.0 * 5		16.0				
Change Period (Y+Rc), s	5.0	4.6		5.1	4.0	-		* 5.1				
Max Green Setting (Gmax), s	19.0	46.2		32.1	4.0	* 62		* 32				
Max Q Clear Time (g_c+l1), s	10.0	26.3		4.1	0.0	9.2		4.3				
Green Ext Time (p_c), s	0.2	8.2		0.0	0.0	10.1		0.2				
Intersection Summary												
HCM 2010 Ctrl Delay			19.6									
HCM 2010 LOS			В									

Traffic Impact Study for Haystack Pacifica Existing plus Project AM Peak

HCM 2010 TWSC

3: East D St. & Weller St.

Intersection						
Int Delay, s/veh	1					
-						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	_î,		۰Y	
Traffic Vol, veh/h	25	730	719	19	12	36
Future Vol, veh/h	25	730	719	19	12	36
Conflicting Peds, #/h	r 0	0	0	11	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None		None
Storage Length		-	-	-	0	-
Veh in Median Storag	ge,# -	0	0	-	0	-
Grade, %		0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	28	811	799	21	13	40
Major/Minor	Major1	1	Major2	1	Ainor2	
Conflicting Flow All	831	0		0	1688	821

Stage 1 - - 821 - Stage 2 - - 867 - Critical Hdwy 412 - 6.42 6.22 Critical Hdwy Stg 1 - - 5.42 - Critical Hdwy Stg 2 - - 5.42 - Critical Hdwy Stg 2 - - 5.42 - Follow-up Hdwy 2.218 - - 5.42 - Follow-up Hdwy 2.218 - - 103 374 Stage 1 - - - 432 - Stage 2 - - - 411 - Platoon blockd, % - - - - - Mov Cap-1 Maneuver 794 - - 95 - Stage 1 - - - 401 - Stage 2 - - - 407 - Stage 2 - - - 407 - Not Cap-2 Maneuver - - 407 <td< th=""><th>Conflicting Flow All</th><th>831</th><th>0</th><th>-</th><th>0</th><th>1688</th><th>821</th><th></th><th></th></td<>	Conflicting Flow All	831	0	-	0	1688	821		
Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - 5.42 - Critical Hdwy Stg 2 - - 5.42 - Follow-up Hdwy 2.218 - - 5.12 - Follow-up Hdwy 2.218 - - 103 374 Stage 1 - - - 432 - Stage 2 - - - 432 - Variant 2 - - - 411 - Platoon blocked, % - - - 95 371 Mov Cap-2 Maneuver 794 - - 95 - Stage 1 - - - 401 - Stage 2 - - - 407 - Stage 2 - - - 407 - Stage 2 - - - 0 27.2 HCM Control Delay, s 0.3 0 27.2 HCM Control Delay, s 0.35 - - Minor Lane/Major Mvmt EBL EBT WBT WBT Capacity (reh/h) 794 - -	Stage 1	-	-	-	-	821	-		
Critical Hdwy Stg 1 - - 5 42 - Critical Hdwy Stg 2 - - 5 42 - Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 801 - - 103 374 Stage 1 - - 432 - - Platoon blocked, % - - - 401 Vaor Cap-1 Maneuver 794 - 95 371 Mov Cap-2 Maneuver - - 401 - Stage 1 - - - 401 - Stage 1 - - - 401 - Stage 2 - - - 401 - Mort Cohrol Delay, s 0.3 0 27.2 - HCM Control Delay, s 0.3 0 <td< td=""><td>Stage 2</td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td></td></td<>	Stage 2			-	-		-		
Critical Hdwy Stg 2 - - - 5.42 - Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 801 - - 103 374 Stage 1 - - - 432 - Stage 2 - - - 411 - Platon blocked, % - - - 401 - Mov Cap-1 Maneuver 794 - - 95 371 Mov Cap-2 Maneuver 794 - - 95 - Stage 1 - - - 401 - Stage 2 - - - 401 - Stage 2 - - - 407 - Stage 2 - - - 407 - HCM Control Delay, s 0.3 0 27.2 - HCM Control Delay, s 0.3 0 27.2 - Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 -	Critical Hdwy	4.12	-	-	-	6.42	6.22		
Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 801 - - 103 374 Stage 1 - - 432 - - Stage 2 - - - 432 - Value 2 - - - 411 - Platoon blocked, % - - - 401 Vox Cap-2 Maneuver - - 401 - Stage 1 - - - 401 - Stage 2 - - - 407 - HCM Control Delay, s 0.3 0 27.2 - HCM LOS D - - 215 HCM Lane//Kajor Mvmt EBL EBL WBR SBL1 - Capacity (veh/h) 794 - - <td>Critical Hdwy Stg 1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>5.42</td> <td>-</td> <td></td> <td></td>	Critical Hdwy Stg 1	-	-	-	-	5.42	-		
Pot Cap-1 Maneuver 801 - - 103 374 Stage 1 - - - 432 - Stage 2 - - 432 - Platoon blocked, % - - 411 - Mov Cap-1 Maneuver 794 - 95 371 Mov Cap-2 Maneuver 794 - 95 - Stage 1 - - 401 - Stage 2 - - 407 - Approach EB WB SB HCM Control Delay, s 0.3 0 27.2 HCM LOS D D Minor Lane/Major Mvmt EBL EBT WBT Kell Veh/h) 794 - - 215 HCM Control Delay (s) 9.7 0 - 0.248	Critical Hdwy Stg 2	-	-	-	-	5.42	-		
Stage 1 - - 432 - Stage 2 - - - 411 - Platoon blocked, % - - - 411 - Mov Cap-1 Maneuver 794 - - 95 371 Mov Cap-2 Maneuver - - 95 - Stage 1 - - - 401 - Stage 2 - - - 401 - Stage 2 - - - 407 - HCM Control Delay, s 0.3 0 27.2 - HCM LOS D - - - - Minor Lane/Major Mvmt EBL EBT WBR SBL1 - - Capacity (ver/h) 794 - - 215 - - HCM Lane V/C Ratio 0.035 - 0.248 - - 215 HCM Control Delay (s) 9.7 0 - 27.2 - - -			-	-	-	3.518	3.318		
Stage 2 - - 411 - Platoon blocked, % - - - - Mov Cap-1 Maneuver 794 - - 95 371 Mov Cap-2 Maneuver 794 - - 95 - Stage 1 - - - 401 - Stage 2 - - - 401 - Stage 2 - - - 407 - HCM Control Delay, s 0.3 0 27.2 - HCM LoS D - - - 0 Minor Lane/Major Mvmt EBL EBT WBR SBLn1 - Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - 0.248 HCM Control Delay (s) 9.7 0 - 27.2	Pot Cap-1 Maneuver	801	-	-		103	374		
Platoon blocked, %		-	-	-			-		
Mov Cap-1 Maneuver 794 - - 95 371 Mov Cap-2 Maneuver - - 95 - Stage 1 - - - 401 - Stage 2 - - - 401 - Approach EB WB SB - - HCM Control Delay, s 0.3 0 27.2 - HCM LOS D - - - - Minor Lane/Major Mvmt EBL EBT WBR SBLn1 - Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - 0.248 HCM Control Delay (s) 9.7 0 - 27.2 <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>411</td> <td>-</td> <td></td> <td></td>		-	-	-	-	411	-		
Mov Cap-2 Maneuver - - 95 - Stage 1 - - - 401 - Stage 2 - - - 401 - Approach EB WB SB - - 407 - HCM Control Delay, s 0.3 0 27.2 -			-	-	-				
Stage 1 - - - 401 - Stage 2 - - - 407 - Approach EB WB SB HCM Control Delay, s 0.3 0 27.2 HCM LOS D - - - Minor Lane/Major Mvmt EBL EBT WBR SBLn1 Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - - 0.248 HCM Control Delay (s) 9.7 0 - 27.2				-			371		
Stage 2 - - 407 - Approach EB WB SB HCM Control Delay, s 0.3 0 27.2 HCM LOS D D Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/fh) 794 - - 215 HCM Lane V/C Ratio 0.035 - - 0.248 HCM Control Delay (s) 9.7 0 - 27.2		r -	-	-	-		-		
Approach EB WB SB HCM Control Delay, s 0.3 0 27.2 HCM LOS D D Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - - 0.248 HCM Control Delay (s) 9.7 0 - 27.2		-	-	-	-		-		
HCM Control Delay, s 0.3 0 27.2 HCM LOS D Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - 0 248 HCM Control Delay (s) 9.7 0 - 27.2	Stage 2	-	-	-	-	407	-		
HCM Control Delay, s 0.3 0 27.2 HCM LOS D D Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - - 0.248 HCM Control Delay (s) 9.7 0 - 27.2									
HCM LOS D Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - - 0.248 HCM Control Delay (s) 9.7 0 - 27.2	Approach	EB		WB		SB			
Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - - 0.248 HCM Control Delay (s) 9.7 0 - 27.2	HCM Control Delay, s	s 0.3		0		27.2			
Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - - 0.248 HCM Control Delay (s) 9.7 0 - 27.2	HCM LOS					D			
Capacity (veh/h) 794 - - 215 HCM Lane V/C Ratio 0.035 - - 0.248 HCM Control Delay (s) 9.7 0 - 27.2									
HCM Lane V/C Ratio 0.035 0.248 HCM Control Delay (s) 9.7 0 - 27.2	Minor Lane/Major Mvr	mt	EBL	EBT	WBT	WBR	SBLn1		
HCM Control Delay (s) 9.7 0 - 27.2	Capacity (veh/h)		794	-		-	215		
			0.035	-	-	-	0.248		
HCM Lane LOS A A D	HCM Control Delay (s	s)	9.7	0	-	-	27.2		
	HCM Lane LOS		Α	Α		-	D		

0.1 - - 0.9

HCM 2010 TWSC 4: Copeland St. & East D St.

5.5

ሻ ቡ

143 608

143 608

60

Major1

685

17 0 6

Free Free Free

0

2 2 2

0 0

155 661 1

1

Intersection Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # -

Traffic Vol, veh/h

Future Vol, veh/h

RT Channelized

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Storage Length

Grade, %

Mvmt Flow

Major/Minor

Sign Control

EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR 4 4 4 2 577 38 1 15 2 162 0 3 2 577 38 0 1 3 15 2 162 0 17 1 11 11 0 1 6 0 Free Free Free Stop Stop Stop Stop Stop Stop - None - - None - - None - - None 0 -0 -0 -0 -0 0 0 92 92 92 92 92 92 92 92 92 92 92 92 92 2 2 2 2 2 2 2 2 2 2 2 176 2 627 41 0 1 3 16 Major2 Minor1 Minor2 0 1720 1667 679 1654 1647 666 668 0 - 978 978 - 669 669

Connicting Flow All	005	0	0		000	0	0	1720	1007	0//	1034	1047	000	
Stage 1	-	-	-		-	-	-	978	978	-	669	669	-	
Stage 2	-		-		-	-	-	742	689	-	985	978	-	
Critical Hdwy	4.12	-	-		4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	-	-	-		-	-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	-		-		-	-	-	6.12	5.52	-	6.12	5.52	-	
Follow-up Hdwy	2.218	-	-		2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	908	-	-		922	-	-	70	96	452	78	99	459	
Stage 1	-	-	-		-	-	-	301	329	-	447	456	-	
Stage 2	-		-		-	-	-	408	446	-	299	329	-	
Platoon blocked, %		-	-			-	-							
Mov Cap-1 Maneuver	895	-	-		917	-	-	36	78	446	65	80	452	
Mov Cap-2 Maneuver	-	-	-		-	-	-	36	78	-	65	80	-	
Stage 1	-	-	-		-	-	-	248	271	-	364	448	-	
Stage 2	-	-	-		-	-	-	247	438	-	242	271	-	
Approach	EB				WB			NB			SB			
HCM Control Delay, s	1.9				0			22.9			39.2			
HCM LOS								С			E			
Minor Lane/Major Mvm	t I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1					
Capacity (veh/h)		205	895	1.1	-	917	-	-	291					
HCM Lane V/C Ratio		0.021	0.174		-	0.002			0.669					
HCM Control Delay (s)		22.9	9.9		-	8.9	0	-	39.2					
HCM Lane LOS		С	А		-	А	А	-	E					
HCM 95th %tile Q(veh)	1	0.1	0.6		-	0	-	-	4.4					

Traffic Impact Study for Haystack Pacifica Existing plus Project AM Peak

HCM 95th %tile Q(veh)

03/20/2019

Traffic Impact Study for Haystack Pacifica Existing plus Project AM Peak

Synchro 10 Report W-Trans

03/20/2019

HCM 2010 TWSC 5: Weller St. & Internal Street

03/20/2019

Intersection			_		_	_
Int Delay, s/veh	1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	1011	1	NDI	JDL	<u>उठा</u> दी
Traffic Vol, veh/h	- T	3	44	7	11	40
Future Vol. veh/h	0	3	44	7	11	40
Conflicting Peds, #/hr	0	0	44	0	0	40
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Siup -	None	Fiee -	None	Fiee -	None
Storage Length	- 0	None -		None -		None
Veh in Median Storage	-		0			0
Grade, %	e, # 0 0		0			0
Grade, % Peak Hour Factor	92	92	92	92	- 92	92
	92	92	92		92	92
Heavy Vehicles, %		-		2	-	
Mvmt Flow	0	3	48	8	12	43
Major/Minor	Minor1	1	Major1	1	Major2	
Conflicting Flow All	119	52	0	0	56	0
Stage 1	52	-	-	-	-	-
Stage 2	67	-	-	-		
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-		
Critical Hdwy Stg 2	5.42		-			
Follow-up Hdwy	3.518	3.318		-	2.218	-
Pot Cap-1 Maneuver	877	1016			1549	
Stage 1	970	-		-	-	-
Stage 2	956		-			
Platoon blocked, %	,00					
Mov Cap-1 Maneuver	870	1016			1549	
Mov Cap-2 Maneuver	870	-				
Stage 1	962					
Stage 2	956					
Sidye z	730					
Approach	WB		NB		SB	
HCM Control Delay, s	8.6		0		1.6	
HCM LOS	A					
Minor Lane/Major Mvm	nt	NBT	NBR	VBLn1	SBL	SBT
Capacity (veh/h)		no1	HEAL		1549	501
HCM Lane V/C Ratio				0.003		
HCM Control Delay (s)			-	8.6	7.3	0
				0.0 A	7.3 A	A
UCM Lano LOS						
HCM Lane LOS HCM 95th %tile Q(veh				0	0	A

HCM 2010 TWSC 6: Copeland St. & Internal Street

03/20/2019

Interception				_		
Intersection Int Delay, s/veh	0.5					
init Delay, s/ven	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	۰Y			र्भ	î>	
Traffic Vol, veh/h	14	4	1	180	169	2
Future Vol, veh/h	14	4	1	180	169	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0					
Veh in Median Storage			-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	15	4	1	196	184	2
Major/Minor	Minor2	1	Major1	Ν	Major2	
Conflicting Flow All	383	185	186	0		0
Stage 1	185		-			-
Stage 2	198					
Critical Hdwy	6.42	6.22	4.12			-
Critical Hdwy Stg 1	5.42					
Critical Hdwy Stg 2	5.42					
Follow-up Hdwy		3.318	2 218			
Pot Cap-1 Maneuver	620	857				
Stage 1	847					
Stage 2	835					
Platoon blocked, %	000					
Mov Cap-1 Maneuver	619	857	1388			
Mov Cap-2 Maneuver	619	- 007	1300			
Stage 1	846					
Stage 2	835					
Stage 2	035					
Approach	EB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1388		660		
HCM Lane V/C Ratio		0.001		0.03		
HCM Control Delay (s))	7.6	0	10.6		-
HCM Lane LOS	/	7.0 A	A	B		
HCM 95th %tile Q(veh	1)	0	-	0.1		
	'	0		0.1		

Traffic Impact Study for Haystack Pacifica Existing plus Project AM Peak Traffic Impact Study for Haystack Pacifica Existing plus Project AM Peak

HCM 2010 TWSC	
1: Weller St. & East Washington St.	

03/20/2019

Intersection			_	_	_	
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		EDK	WBL		NDL	
Traffic Vol. veh/h	↑1 → 782	53	0	851	0	r 42
	782	53			0	
Future Vol, veh/h	782	53	0	851 0	0	42
Conflicting Peds, #/hr				-		-
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None		None
Storage Length	-		-	-	-	0
Veh in Median Storage		-	-	0	0	-
Grade, %	0		-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	850	58	0	925	0	46
Major/Minor I	Maior1		Major2		Minor1	
Conflicting Flow All	0 0	0	viaj0i 2 -			465
	-	0				400
Stage 1						
Stage 2	-		-	-		-
Critical Hdwy		1.1		1.1		6.94
Critical Hdwy Stg 1	-		-			-
Critical Hdwy Stg 2	-	-	-	-		-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	-	-	0	-	0	544
Stage 1	-	-	0	-	0	-
Stage 2	-	-	0	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-		-		539
Mov Cap-2 Maneuver						
Stage 1						
Stage 2						
Sidye z				-		
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		12.3	
HCM LOS					В	
			EDT	500	MOT	
Minor Lane/Major Mvm	nt I	NBLn1	EBT	EBR	WBT	
Capacity (veh/h)		539		-		
HCM Lane V/C Ratio		0.085	-	-	-	
HCM Control Delay (s)		12.3	-	-	-	
HCM Lane LOS		В	-	-	-	
HCM 95th %tile Q(veh)	0.3				
TIGINI 7JUT /000E QUVEN						

Traffic Impact Study for Haystack Pacifica Existing plus Project PM Peak Synchro 10 Report W-Trans HCM 2010 Signalized Intersection Summary 2: Copeland St. & East Washington St.

03/20/2019

	≯	-	\mathbf{r}	1	-	×.	1	- †	1	×	÷	-
Novement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	٦,	A		٦	≜ †₽		٦	4Î			÷	
Traffic Volume (veh/h)	3	811	11	136	801	7	47	0	189	9	0	
Future Volume (veh/h)	3	811	11	136	801	7	47	0	189	9	0	
Number	5	2	12	1	6	16	3	8	18	7	4	1
nitial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.97	0.99		0.99	0.99		1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.(
Adj Sat Flow, veh/h/ln	1863	1793	1900	1863	1698	1900	1863	1863	1900	1900	1863	190
Adj Flow Rate, veh/h	3	891	12	149	880	7	52	0	62	10	0	
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	0	1	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.9
Percent Heavy Veh, %	2	6	6	2	12	12	2	2	2	2	2	
Cap, veh/h	6	1117	15	805	2558	20	218	0	161	145	0	
Arrive On Green	0.00	0.32	0.32	0.45	0.78	0.78	0.10	0.00	0.10	0.10	0.00	0.0
Sat Flow, veh/h	1774	3440	46	1774	3279	26	1399	0	1565	847	0	
Grp Volume(v), veh/h	3	441	462	149	433	454	52	0	62	10	0	
Grp Sat Flow(s), veh/h/ln	1774	1704	1783	1774	1613	1692	1399	0	1565	847	0	
2 Serve(g s), s	0.2	29.3	29.3	6.2	10.0	10.0	0.0	0.0	4.6	0.9	0.0	0
Cycle Q Clear(q c), s	0.2	29.3	29.3	6.2	10.0	10.0	3.4	0.0	4.6	5.5	0.0	0
Prop In Lane	1.00		0.03	1.00		0.02	1.00		1.00	1.00		0.0
ane Grp Cap(c), veh/h	6	553	579	805	1258	1320	218	0	161	145	0	
//C Ratio(X)	0.53	0.80	0.80	0.19	0.34	0.34	0.24	0.00	0.38	0.07	0.00	0.0
Avail Cap(c_a), veh/h	129	747	782	805	1258	1320	447	0	418	360	0	
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Jpstream Filter(I)	1.00	1.00	1.00	0.85	0.85	0.85	1.00	0.00	1.00	1.00	0.00	0.0
Jniform Delay (d), s/veh	61.7	38.2	38.2	20.2	4.1	4.1	51.4	0.0	52.0	54.5	0.0	0
ncr Delay (d2), s/veh	26.2	11.4	10.9	0.0	0.6	0.6	0.4	0.0	1.1	0.1	0.0	0
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
%ile BackOfQ(50%),veh/In	0.1	15.5	16.1	3.0	4.6	4.8	1.7	0.0	2.0	0.3	0.0	0
_nGrp Delay(d),s/veh	87.9	49.6	49.1	20.2	4.7	4.7	51.8	0.0	53.1	54.7	0.0	0
InGrp LOS	F	D	D	С	А	А	D		D	D		
Approach Vol, veh/h		906			1036			114			10	
Approach Delay, s/veh		49.5			6.9			52.5			54.7	
Approach LOS		D			A			D			D	
								_			5	
Fimer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	61.3	44.9		17.9	4.4	101.7		17.9				
Change Period (Y+Rc), s	5.0	4.6		5.1	4.0	* 5		* 5.1				
Vax Green Setting (Gmax), s	22.0	54.4		32.9	9.0	* 68		* 33				
Vlax Q Clear Time (g_c+l1), s	8.2	31.3		7.5	2.2	12.0		6.6				
Green Ext Time (p_c), s	0.2	9.0		0.0	0.0	11.5		0.4				
ntersection Summary												
HCM 2010 Ctrl Delay			28.3									
HCM 2010 LOS			20.5 C									
Votes			Ū									
10105												

HCM 2010 TWSC

3: East D St. & Weller St.

Intersection						
Int Delay, s/veh	1.1					
-						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	_î,		۰Y	
Traffic Vol, veh/h	42	891	718	31	9	50
Future Vol, veh/h	42	891	718	31	9	50
Conflicting Peds, #/hr	0	0	0	15	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0		0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	45	948	764	33	10	53
Major/Minor I	Major1	1	Major2	1	Minor2	
Conflicting Flow All	812	0		0	183/	706

Conflicting Flow All	812	0	-	0	1834	796
Stage 1	-	-	-		796	
Stage 2	-	-	-		1000	
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-		5.42	-
Critical Hdwy Stg 2	-				0.12	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	814	-	-		84	387
Stage 1	-	-	-		444	-
Stage 2	-	-	-	-	341	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	804	-	-	-	72	382
Mov Cap-2 Maneuver	-	-	-	-	72	-
Stage 1	-	-	-	-	387	-
Stage 2	-	-	-	-	337	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		26.3	
HCM LOS					D	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		804	-	-	-	231
HCM Lane V/C Ratio		0.056	-	-	-	0.272
HCM Control Delay (s))	9.7	0			26.3
HCM Lane LOS		A	Α		-	D
	`	0.0				

A A - - D 0.2 - - - 1.1

HCM 2010 TWSC 4: Copeland St. & East D St.

Intersection

ITTELSECTION													
Int Delay, s/veh	8.8												
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1. 1.	LDI		TIDE .	4		HDE	4	HBIT	002	4	ODIT
Traffic Vol, veh/h	184	722	1		1	600	53	2	2	4	20	2	140
Future Vol. veh/h	184	722	1		1	600	53	2	2	4	20	2	140
Conflicting Peds, #/hr	25	0	2		2	000	25	5	0	8	8	0	5
Sign Control	Free	Free	Free		Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None		TICC	TICC	None	Jiop	Jiop	None	Stop	Jiop	None
Storage Length	60		NUTIC				NOTIC			NONC	-		NUTC
Veh in Median Storage		0				0			0			0	
Grade, %	- "	0				0			0			0	
Peak Hour Factor	95	95	95		95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mymt Flow	194	760	1		2	632	56	2	2	4	21	2	147
IVIVITIL FIOW	194	/00	1		- 1	032	00	2	2	4	21	2	147
Major/Minor	Major1			N	lajor2		1	Ainor1			Minor2		
Conflicting Flow All	713	0	0		763	0	0	1893	1866	771	1847	1838	690
Stage 1	-	-	-		-	-	-	1151	1151	-	687	687	-
Stage 2	-	-	-			-	-	742	715	-	1160	1151	-
Critical Hdwy	4.12	-	-		4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-			-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-		-		-			6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-		2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	887		-		850			53	73	400	57	76	445
Stage 1			-		-			241	272		437	447	
Stage 2	-		-		-		-	408	434	-	238	272	-
Platoon blocked, %													
Mov Cap-1 Maneuver	869				849			28	55	397	44	58	434
Mov Cap-2 Maneuver	-				-			28	55	-	44	58	-
Stage 1								187	211		333	437	-
Stage 2								267	424		180	211	
A	ED				WD			ND			CD		
Approach	EB				WB			NB	_	_	SB	_	
HCM Control Delay, s	2.1				0			65.3			79.3		
HCM LOS								F			F		
Minor Lane/Major Mvn	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			_	
Capacity (veh/h)		68	869	1.1		849			200				
HCM Lane V/C Ratio			0.223			0.001			0.853				
HCM Control Delay (s)		65.3	10.3		-	9.2	0		79.3				
HCM Lane LOS		F	B			A	Ă		F				
HCM 95th %tile Q(veh)	0.4	0.9			0	-		6.4				
	/	0.1	0.7			- 0			0.1				

Traffic Impact Study for Haystack Pacifica Existing plus Project PM Peak

HCM 95th %tile Q(veh)

Synchro 10 Report W-Trans

03/20/2019

Traffic Impact Study for Haystack Pacifica Existing plus Project PM Peak

HCM 2010 TWSC 5: Weller St. & Internal Street

03/20/2019

Intersection						
Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		1	DIX	ODL	<u>الات</u>
Traffic Vol, veh/h	0	11	49	4	6	51
Future Vol. veh/h	0	11	49	4	6	51
Conflicting Peds, #/hr	0	0	47	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Siop	None	-	None	Fiee -	None
Storage Length	- 0	None -		None -		None -
			0			0
Veh in Median Storage			-		1.1	-
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	12	53	4	7	55
Major/Minor I	Minor1	M	Najor1	1	Major2	
Conflicting Flow All	124	55	0	0	57	0
Stage 1	55	-	-	-	-	-
Stage 2	69	-	-	-		-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42			-	-	-
Critical Hdwy Stg 2	5.42	-		-	-	-
Follow-up Hdwy	3.518	3 318			2.218	
Pot Cap-1 Maneuver	871	1012		-	1547	
Stage 1	968	1012			1347	
Stage 2	954					
Platoon blocked. %	734					
	0/7	4040		-	45.47	-
Mov Cap-1 Maneuver	867	1012	-		1547	1.1
Mov Cap-2 Maneuver	867	-	-		-	-
Stage 1	963	-		-	-	-
Stage 2	954		-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.6		0		0.8	
HCM LOS	А					
Minor Lane/Major Mvm	a+	NBT		NBLn1	SBI	SBT
	u	IND I		1012	3BL 1547	- SB1
Capacity (veh/h)						
HCM Lane V/C Ratio		-		0.012		-
HCM Control Delay (s)		1.1	-	8.6	7.3	0
				A	A	A
HCM Lane LOS HCM 95th %tile Q(veh				0	0	-

HCM 2010 TWSC 6: Copeland St. & Internal Street

03/20/2019

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	EBL	EBR	INDL	NB I	281	SBK
Traffic Vol, veh/h	"1	2	4	4 235	₽	7
Future Vol. veh/h	7	2	4	235	141	7
Conflicting Peds, #/hr	0	0	0	235	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-		-		-
Veh in Median Storage				0	0	
Grade, %	0			0	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	8	2	4	255	153	8
	0	-		200	100	0
Maina // Airana //	11:	,	Astend		4-1	
Major/Minor I Conflicting Flow All	Minor2 420	157	Major1 161	0	Major2	0
Stage 1	420	157	101	-		0
Stage 2	263				-	
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	0.22	4.12			
Critical Hdwy Stg 2	5.42					
		- 3.318			-	
Follow-up Hdwy					-	
Pot Cap-1 Maneuver	590	889	1418		-	
Stage 1	871	-	-	-	-	
Stage 2	781	1	-			1.1
Platoon blocked, %					-	-
Mov Cap-1 Maneuver	588	889	1418	1.1	-	
Mov Cap-2 Maneuver	588	-	-	-	-	
Stage 1	868					1.1
Stage 2	781	-	-	-	-	
Approach	EB		NB		SB	
HCM Control Delay, s	10.7		0.1		0	
HCM LOS	B				-	
		NDI	NDT	EDI 1	CDT	CDD
Minor Lane/Major Mvm	11	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1418		000		1.1
		0.003		0.015	-	
HCM Lane V/C Ratio			0	10.7		
HCM Control Delay (s)						
		7.5 A 0	A	B	-	-

Traffic Impact Study for Haystack Pacifica Existing plus Project PM Peak Traffic Impact Study for Haystack Pacifica Existing plus Project PM Peak

HCM 2010 TWSC	
1: Weller St. & East Washington St.	

03/20/2019

Intersection Int Delay, s/veh	0.4					
,						
Movement	EBT	EBR	WBL		NBL	NBR
Lane Configurations	_†î≽			- 11		1
Traffic Vol, veh/h	700	50		1040	0	66
Future Vol, veh/h	700	50	0	1040	0	66
Conflicting Peds, #/hr	0	9	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None		None
Storage Length		-		-	-	0
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-		0	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	700	50	0	1040	0	66
www.criow	700	50	0	1010	0	00
	Major1	1	Major2	N	Vinor1	
Conflicting Flow All	0	0	-	-	-	384
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-		-		-	-
Critical Hdwy Stg 2	-		-		-	
Follow-up Hdwy		-				3.32
Pot Cap-1 Maneuver	-		0	-	0	614
Stage 1		-	0	-	0	- 10
Stage 2			0		0	
Platoon blocked, %			U		0	
						(00
Mov Cap-1 Maneuver					-	609
Mov Cap-2 Maneuver		-		-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		11.6	
	0		0		11.0 B	
HCM LOS					D	
Minor Lane/Major Mvm	nt I	VBLn1	EBT	EBR	WBT	
Capacity (veh/h)		609	-		-	
HCM Lane V/C Ratio		0.108				
		11.6				
HCM Control Delay (s)				-		
HCM Control Delay (s)						
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh))	B 0.4				

Traffic Impact Study for Haystack Pacifica Future plus Project AM Peak Synchro 8 Report W-Trans HCM 2010 Signalized Intersection Summary 2: Copeland St. & East Washington St.

03/20/2019

	≯	-	\mathbf{r}	1	-	×.	1	- † -	1	×	÷.	-
Novement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	ľ	A		٦	A		٦	eî 🗧			\$	
Traffic Volume (veh/h)	71	596	99	243	875	49	145	0	240	27	60	
Future Volume (veh/h)	71	596	99	243	875	49	145	0	240	27	60	3
lumber	5	2	12	1	6	16	3	8	18	7	4	
nitial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.98	1.00		1.00	1.00		1.
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.(
Adj Sat Flow, veh/h/ln	1863	1705	1900	1863	1648	1900	1863	1863	1900	1900	1863	190
Adj Flow Rate, veh/h	71	596	99	243	875	49	145	0	240	27	60	:
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	0	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.(
Percent Heavy Veh, %	2	13	13	2	16	16	2	2	2	2	2	
Cap, veh/h	91	741	123	589	1654	93	311	0	337	90	167	(
Arrive On Green	0.05	0.27	0.27	0.33	0.55	0.55	0.21	0.00	0.21	0.21	0.21	0.2
Sat Flow, veh/h	1774	2764	458	1774	3011	169	1298	0	1577	123	779	3
Grp Volume(v), veh/h	71	349	346	243	455	469	145	0	240	117	0	
Grp Sat Flow(s), veh/h/ln	1774	1620	1602	1774	1566	1614	1298	0	1577	1213	0	
2 Serve(g_s), s	2.8	14.0	14.1	7.4	12.9	12.9	1.0	0.0	9.9	0.3	0.0	0
Cycle Q Clear(g_c), s	2.8	14.0	14.1	7.4	12.9	12.9	11.2	0.0	9.9	10.2	0.0	0
Prop In Lane	1.00		0.29	1.00		0.10	1.00		1.00	0.23		0.
ane Grp Cap(c), veh/h	91	434	429	589	860	886	311	0	337	323	0	
//C Ratio(X)	0.78	0.80	0.81	0.41	0.53	0.53	0.47	0.00	0.71	0.36	0.00	0.0
Avail Cap(c_a), veh/h	152	486	481	589	860	886	552	0	631	613	0	
ICM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.(
Jpstream Filter(I)	1.00	1.00	1.00	0.68	0.68	0.68	1.00	0.00	1.00	1.00	0.00	0.0
Jniform Delay (d), s/veh	32.8	23.9	23.9	18.1	10.0	10.0	26.2	0.0	25.5	23.3	0.0	0
ncr Delay (d2), s/veh	5.5	14.5	15.0	0.1	1.6	1.5	0.8	0.0	2.1	0.5	0.0	0
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
%ile BackOfQ(50%),veh/ln	1.5	8.0	8.0	3.7	5.9	6.1	2.7	0.0	4.5	1.9	0.0	0
.nGrp Delay(d),s/veh	38.3	38.4	38.9	18.2	11.6	11.6	27.1	0.0	27.6	23.8	0.0	0
nGrp LOS	D	D	D	В	В	В	С		С	С		
Approach Vol, veh/h		766			1167			385			117	
Approach Delay, s/veh		38.6			13.0			27.4			23.8	
Approach LOS		D			В			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	28.3	22.8		19.0	7.6	43.4		19.0				
Change Period (Y+Rc), s	5.0	4.0		4.0	4.0	* 5		4.0				
Max Green Setting (Gmax), s	8.0	21.0		28.0	6.0	* 24		28.0				
Max Q Clear Time (q_c+11), s	9.4	16.1		12.2	4.8	14.9		13.2				
Green Ext Time (p_c), s	0.0	2.4		0.4	0.0	5.1		1.5				
ntersection Summary												
ICM 2010 Ctrl Delay			23.8									
ICM 2010 LOS			23.0 C									
Votes												

HCM 2010 TWSC

3: East D St. & Weller St.

03/20/2019

Intersection	_		_			
Int Delay, s/veh	1.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	1	WDI	Y	JUN
	15			21		31
Traffic Vol, veh/h		850	700	31	30	
Future Vol, veh/h	15	850	700	31	30	31
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %		0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	15	850	700	31	30	31
	10	000	100	0.	00	0.
Major/Minor N	Najor1	1	Major2	1	Minor2	
Conflicting Flow All	731	0	-	0	1596	716
Stage 1	-	-	-	-	716	-
Stage 2				-	880	-
Critical Hdwy	4.12	-		-	6.42	6.22
Critical Hdwy Stg 1					5.42	
Critical Hdwy Stg 2					5.42	
Follow-up Hdwy	2.218				3.518	
Pot Cap-1 Maneuver	873				117	430
		-				
Stage 1		-	-		484	
Stage 2		1.1	-	-	406	-
Platoon blocked, %				-		
Mov Cap-1 Maneuver	873	-	-	-	113	430
Mov Cap-2 Maneuver	-	-	-	-	113	-
Stage 1		-	-	-	468	-
Stage 2					406	
olugo 2					100	
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		34.7	
HCM LOS					D	
N Alian and Laura /N Alaian N Alian		EDI	EDT	WDT	WDD	CDI -1
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	
Capacity (veh/h)		873				181
HCM Lane V/C Ratio		0.017	-	-	-	0.337
		9.2	0	-	-	34.7
HCM Control Delay (s)		7.2				
		7.2 A	Â	-	-	D

Traffic Impact Study for Haystack Pacifica Future plus Project AM Peak

Synchro 8 Report W-Trans

HCM 2010 TWSC 4: Copeland St. & East D St.

130.3

1 Þ

221 630

EBL EBT EBR

2

Intersection Int Delay, s/veh

Movement Lane Configurations

Traffic Vol, veh/h

03/20/2019 WBL WBT WBR NBL NBT NBR SBL SBT SBR ♣ ♣ 0 1 114 0 212 1

Traffic vol, ven/n	221	630	2		2	479	268		0		114	0	212
Future Vol, veh/h	221	630	2		2	479	268	1	0	1	114	0	212
Conflicting Peds, #/hr	17	0	6		6	0	17	1	0	11	11	0	1
Sign Control	Free	Free	Free		Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	None
Storage Length	60	-	-		-		-		-	-		-	-
Veh in Median Storage	e,# -	0	-		-	0	-	-	0	-	-	0	-
Grade, %	-	0	-			0	-		0	-		0	-
Peak Hour Factor	100	100	100		100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mymt Flow	221	630	2		2	479	268	1	0	1	114	0	212
Major/Minor I	Major1			Λ	/lajor2			Minor1			Minor2		
Conflicting Flow All	764	0	0	- 11	638	0	0	1803	1847	648	1719	1714	631
Stage 1	704	-	U		030	0	U	1079	1047	040	634	634	031
Stage 2								724	768		1085	1080	
Critical Hdwy	4.12				4.12			7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1					4.1Z		-	6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 2								6.12	5.52	-	6.12	5.52	
Follow-up Hdwy	2.218		-		2.218		-	3.518	4.018	3.318	3.518	4.018	3.318
	2.218				2.218 946			3.518	4.018	470	~ 71	4.018	481
Pot Cap-1 Maneuver	849				946	-							481
Stage 1	-	-						264 417	295 411		467 262	473 294	-
Stage 2			-		-	-		417	411	-	262	294	-
Platoon blocked, %	007				0.14			07	5.4	1/0		(5	474
Mov Cap-1 Maneuver	837	-	-		941			27	54	463	~ 55	65	474
Mov Cap-2 Maneuver	-				-			27	54		~ 55	65	
Stage 1	-				-			193	216		339	464	
Stage 2					-			229	404		191	215	
Approach	EB				WB			NB			SB		
HCM Control Delay, s	2.8				0			78.5		\$	763.6		
HCM LOS								F			F		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1				
Capacity (veh/h)		51	837		-	941	-	-	129				
HCM Lane V/C Ratio		0.039	0.264		-	0.002	-	-	2.527				
HCM Control Delay (s)	1	78.5	10.8		-	8.8	0	-\$	763.6				
HCM Lane LOS		F	В		-	А	А		F				
HCM 05th %tile O(vob	3	0.1	11			0			20.0				

2 479 268

Notes
-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

0

- 28.9

Traffic Impact Study for Haystack Pacifica Future plus Project AM Peak

HCM 95th %tile Q(veh)

0.1 1.1

HCM 2010 Signalized Intersection Summary 4: Copeland St. & East D St.

03/20/2019

	≯	-	\mathbf{r}	1	-		1	1	1	1	÷.	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	4Î		٦	¢Î		٦	¢Î		٦	4Î	
Traffic Volume (veh/h)	221	630	2	2	479	268	1	0	1	114	0	212
Future Volume (veh/h)	221	630	2	2	479	268	1	0	1	114	0	212
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.96	0.99		0.97	0.97		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	221	630	2	2	479	268	1	0	1	114	0	212
Adj No. of Lanes	1	1	0	1	1	0	1	1	0	1	1	(
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	359	1066	3	417	538	301	218	0	311	409	0	311
Arrive On Green	0.09	0.57	0.57	0.00	0.49	0.49	0.20	0.00	0.20	0.20	0.00	0.20
Sat Flow, veh/h	1774	1856	6	1774	1104	618	1149	0	1540	1372	0	1540
Grp Volume(v), veh/h	221	0	632	2	0	747	1	0	1	114	0	212
Grp Sat Flow(s), veh/h/ln	1774	0	1861	1774	0	1722	1149	0	1540	1372	0	1540
Q Serve(g_s), s	3.0	0.0	11.8	0.0	0.0	21.3	0.0	0.0	0.0	3.9	0.0	6.9
Cycle Q Clear(g_c), s	3.0	0.0	11.8	0.0	0.0	21.3	6.9	0.0	0.0	3.9	0.0	6.9
Prop In Lane	1.00		0.00	1.00		0.36	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	359	0	1069	417	0	838	218	0	311	409	0	311
V/C Ratio(X)	0.62	0.00	0.59	0.00	0.00	0.89	0.00	0.00	0.00	0.28	0.00	0.68
Avail Cap(c_a), veh/h	396	0	1101	545	0	955	348	0	484	563	0	484
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	11.3	0.0	7.4	7.5	0.0	12.6	23.2	0.0	17.3	18.8	0.0	20.0
Incr Delay (d2), s/veh	2.4	0.0	0.8	0.0	0.0	9.7	0.0	0.0	0.0	0.4	0.0	2.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.0	0.0	6.2	0.0	0.0	12.2	0.0	0.0	0.0	1.5	0.0	3.1
LnGrp Delay(d),s/veh	13.7	0.0	8.2	7.5	0.0	22.3	23.2	0.0	17.3	19.2	0.0	22.6
LnGrp LOS	В		A	Α		С	С		В	В		0
Approach Vol, veh/h		853			749			2			326	
Approach Delay, s/veh		9.6			22.2			20.2			21.4	
Approach LOS		А			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		14.9	4.1	35.1		14.9	8.9	30.3				
Change Period (Y+Rc), s		4.0	4.0	4.0		4.0	4.0	4.0				
Max Green Setting (Gmax), s		17.0	4.0	32.0		17.0	6.0	30.0				
Max Q Clear Time (q c+I1), s		8.9	2.0	13.8		8.9	5.0	23.3				
Green Ext Time (p_c), s		0.0	0.0	4.4		1.1	0.1	3.1				
Intersection Summary												
HCM 2010 Ctrl Delay			16.5									
HCM 2010 LOS			B									

Traffic Impact Study for Haystack Pacifica Future plus Project AM Peak - Signal at Copeland/D Synchro 8 Report W-Trans HCM 2010 TWSC 5: Weller St. & Internal Street

03/20/2019	

Intersection						
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	WDI	1	NDR	JDL	ار ار
Traffic Vol, veh/h	- T	3	44	7	11	6 0
Future Vol. veh/h	0	3	44	7	11	60
	0	3	44	0	0	00
Conflicting Peds, #/hr	-	-		Free	-	-
Sign Control	Stop	Stop	Free		Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	3	44	7	11	60
				_		
	Minor1		Major1		Major2	
Conflicting Flow All	130	48	0	0	51	0
Stage 1	48	-	-	-	-	-
Stage 2	82	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42			-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	
Pot Cap-1 Maneuver	864	1021			1555	
Stage 1	974	-			-	
Stage 2	941					
Platoon blocked, %	741					
	050	1001	-		1555	
Mov Cap-1 Maneuver	858	1021		-	1555	
Mov Cap-2 Maneuver	858	-		-	-	-
Stage 1	967		-			
Stage 2	941	-		-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.5		0	_	1.1	_
HCM LOS			0		1.1	
IICIVI LUS	A					
Minor Lane/Major Mvm	t	NBT	NBRV	NBLn1	SBL	SBT
Capacity (veh/h)				1021	1555	
HCM Lane V/C Ratio				0.003		
HCM Control Delay (s)				8.5	7.3	0
HCM Lane LOS						
HUWLARE LUS		-		A	A	А
HCM 95th %tile Q(veh)				0	0	

Traffic Impact Study for Haystack Pacifica Future plus Project AM Peak

HCM 2010 TWSC
6: Copeland St. & Internal Street

03/20/2019

0.3					
EBL	EBR	NBL	NBT	SBT	SBR
	4	1	488	400	2
14	4	1	488	400	2
0	0	0	0	0	0
Stop	Stop	Free	Free	Free	Free
-				-	None
0	-		-		-
e,# 0	-		0	0	-
0	-		0	0	
100	100	100	100	100	100
					2
					2
			100	100	~
				Major2	
				-	0
				-	-
					-
		-	-	-	-
			-	-	-
					-
	649	1157	-		-
	-	-	-	-	-
616	-	-	-	-	-
			-	-	-
313	649	1157	-	-	-
313	-	-	-	-	-
675	-	-	-	-	-
616	-	-	-	-	-
FR		MR		SB	
		0		0	
C					
nt		NBT		SBT	SBR
	1157	-		-	-
	0.001	-	0.051	-	-
1	8.1	0	15.7	-	-
)					
)	A	А	С	-	-
) 1)		A -	C 0.2		-
	EBL V 14 14 14 0 Stop 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBR 14 4 14 4 14 4 14 4 14 4 0 0 Stop Stop 0 Stop 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 2 14 4 - Minor2 11 401 - 490 - 5.42 - 5.42 - 5.42 - 5.43 - 313 649 313 - 676 - 616 - 15.7 - <	EBL EBR NBL 14 4 1 14 4 1 14 4 1 14 4 1 14 4 1 0 0 0 Stop Stop Free 0 - - 0 0 - 0 10 100 100 100 100 2 2 2 14 4 1 Minor2 Major1 - 401 - - 402 6.22 4.12 5.42 - - 5.42 - - 5.43 3.318 2.218 313 649 1157 616 - - 616 - - 6175 - - 616 - - 617 0	EBL EBR NBL NBT 14 4 1 488 14 4 1 488 14 4 1 488 14 4 1 488 0 0 0 0 0 0 Stop Free Free - 0 - - 0 0 100 0 - - 0 100 100 14 4 1 488 488 488 Minor2 Majori N0 100 100 100 2 2 2 2 2 2 14 4 1 488 Minor2 Majori Majori -	EBL EBR NBL NBT SBT 14 4 1 488 400 14 4 1 488 400 0 0 0 0 0 0 0 0 0 0 0 0 0 Stop Stop Free Free Free Free ree 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 0 - - 0 0 0 0 0 100 <t< td=""></t<>

Traffic Impact Study for Haystack Pacifica Future plus Project AM Peak Synchro 8 Report W-Trans HCM 2010 TWSC 1: Weller St. & East Washington St.

Traffic Impact Study for Haystack Pacifica Future plus Project PM Peak 03/20/2019

Intersection			_		_	
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	_ ≜ ⊅			- 11		1
Traffic Vol, veh/h	1000	51	0	1318	0	41
Future Vol, veh/h	1000	51	0	1318	0	41
Conflicting Peds, #/hr	0	11	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	1000	51	0	1318	0	41
			-		-	
	Major1		Major2		Minor1	
Conflicting Flow All	0	0	-	-		537
Stage 1	-	-	-		-	-
Stage 2	-	-	-	-		-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2		-	-	-	-	-
Follow-up Hdwy	-	-	-	-		3.32
Pot Cap-1 Maneuver	-	-	0	-	0	488
Stage 1	-		0		0	
Stage 2	-	-	0		0	-
Platoon blocked, %					U	
Mov Cap-1 Maneuver						484
Mov Cap-2 Maneuver						404
Stage 1						
		-		-		
Stage 2		-				-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		13.1	
HCM LOS					В	
		UDL 1	EDT		WDT	
Minor Lane/Major Mvm	It I	NBLn1	EBT	EBR	WBT	
Capacity (veh/h)		484	-			
HCM Lane V/C Ratio		0.085	-	-	-	
HCM Control Delay (s)		13.1	-	-	-	
HCM Lane LOS		В	-	-	-	
HCM 95th %tile Q(veh))	0.3	-		-	

HCM 2010 Signalized Intersection Summary 2: Copeland St. & East Washington St.

03/20/2019

	≯	-	\mathbf{r}	-	-	*	1	1	1	1	÷.	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	<u> </u>	≜ †}		5	≜ 1,		۲	4Î			\$	
Traffic Volume (veh/h)	133	863	45	463	1154	34	121	0	268	65	79	
Future Volume (veh/h)	133	863	45	463	1154	34	121	0	268	65	79	
Number	5	2	12	1	6	16	3	8	18	7	4	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.96	1.00		1.00	1.00		1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Adj Sat Flow, veh/h/ln	1863	1796	1900	1863	1701	1900	1863	1863	1900	1900	1863	19
Adj Flow Rate, veh/h	133	863	45	463	1154	34	121	0	268	65	79	
Adj No. of Lanes	1	2	0	1	2	0	1	1	0	0	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Percent Heavy Veh, %	2	6	6	2	12	12	2	2	2	2	2	
Cap, veh/h	329	878	46	585	1317	39	283	0	408	108	123	Ę
Arrive On Green	0.19	0.27	0.27	0.33	0.41	0.41	0.26	0.00	0.26	0.26	0.26	0.2
Sat Flow, veh/h	1774	3291	172	1774	3201	94	1261	0	1576	209	474	20
Grp Volume(v), veh/h	133	447	461	463	582	606	121	0	268	187	0	
Grp Sat Flow(s), veh/h/ln	1774	1706	1756	1774	1616	1679	1261	0	1576	888	0	
Q Serve(g_s), s	5.9	23.5	23.5	21.3	29.9	29.9	0.0	0.0	13.7	6.6	0.0	0
Cycle Q Clear(g_c), s	5.9	23.5	23.5	21.3	29.9	29.9	13.7	0.0	13.7	20.3	0.0	0
Prop In Lane	1.00		0.10	1.00		0.06	1.00		1.00	0.35		0.2
Lane Grp Cap(c), veh/h	329	455	468	585	665	691	283	0	408	284	0	
V/C Ratio(X)	0.40	0.98	0.98	0.79	0.88	0.88	0.43	0.00	0.66	0.66	0.00	0.0
Avail Cap(c_a), veh/h	329	455	468	585	700	728	376	0	525	392	0	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Upstream Filter(I)	1.00	1.00	1.00	0.23	0.23	0.23	1.00	0.00	1.00	1.00	0.00	0.0
Uniform Delay (d), s/veh	32.3	32.8	32.8	27.3	24.4	24.4	29.8	0.0	29.8	32.8	0.0	0
Incr Delay (d2), s/veh	0.3	38.3	37.7	1.6	4.0	3.9	0.8	0.0	1.5	1.9	0.0	0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
%ile BackOfQ(50%),veh/In	2.9	15.9	16.3	10.7	14.0	14.5	2.7	0.0	6.1	4.6	0.0	0
LnGrp Delay(d),s/veh	32.6	71.1	70.5	28.9	28.4	28.3	30.6	0.0	31.3	34.8	0.0	0
LnGrp LOS	С	E	E	С	С	С	С		С	С		
Approach Vol, veh/h		1041			1651			389			187	
Approach Delay, s/veh		65.9			28.5			31.0			34.8	
Approach LOS		E			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	34.7	28.0		27.3	21.7	41.0		27.3				
Change Period (Y+Rc), s	5.0	4.0		4.0	5.0	* 4		4.0				
Max Green Setting (Gmax), s	23.0	24.0		30.0	9.0	* 39		30.0				
Max Q Clear Time (q_c+I1), s	23.3	25.5		22.3	7.9	31.9		15.7				
Green Ext Time (p_c), s	0.0	0.0		0.5	0.0	5.1		1.6				
Intersection Summary												
HCM 2010 Ctrl Delay			41.1									
HCM 2010 LOS			D									
Notes												

Future plus Project PM Peak

W-Trans

HCM 2010 TWSC 3: East D St. & Weller St.

Intersection

ITTELSECTION						
Int Delay, s/veh	1.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	202	4	1		Y	2.511
Traffic Vol. veh/h	21	1000	915	44	18	34
Future Vol. veh/h	21	1000	915	44	18	34
Conflicting Peds, #/hr	0	0001	0	15	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	1166	None	-	None	Stop	None
Storage Length		NUTIE -		NUTIE -	0	NUTIE -
Veh in Median Storage		0	0		0	
Grade, %	:,# -	0	0		0	
Peak Hour Factor	100	100	100	100	100	100
	2	2	2	2	2	2
Heavy Vehicles, %					18	34
Mvmt Flow	21	1000	915	44	18	- 34
Major/Minor N	Major1	Ν	/lajor2		Vinor2	
Conflicting Flow All	974	0	-	0	1994	952
Stage 1	-	-	-	-	952	-
Stage 2					1042	
Critical Hdwy	4.12		-		6.42	6.22
Critical Hdwy Stg 1					5.42	
Critical Hdwy Stg 2	-	-			5.42	
	2.218				3.518	
Pot Cap-1 Maneuver	708				66	315
Stage 1	700				375	515
Stage 2					340	
Platoon blocked. %					340	
Mov Cap-1 Maneuver	699				60	311
	699				60 60	311
Mov Cap-2 Maneuver						
Stage 1			-	1.1	345	-
Stage 2					336	-
Approach	EB		WB		SB	_
HCM Control Delay, s	0.2		0		51.7	
HCM LOS			_		F	
HOW EOS						
		5.01				SPI n1
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	
Minor Lane/Major Mvm Capacity (veh/h)	nt	699	EBT -	WBT -		127
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		699 0.03	-			127 0.409
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		699 0.03 10.3	- - 0	-		127 0.409 51.7
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio		699 0.03	-	-	-	127 0.409

Traffic Impact Study for Haystack Pacifica Future plus Project PM Peak Synchro 8 Report W-Trans

03/20/2019

HCM 2010 TWSC
4: Copeland St. & East D St.

03/20/2019

nt Delay, s/veh	376.4											
lovement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations		i Þ			- 44			4			- ↔	
raffic Vol, veh/h	229	726	1	1	613	194	3	1	3	143	0	337
uture Vol, veh/h	229	726	1	1	613	194	3	1	3	143	0	337
Conflicting Peds, #/hr	25	0	2	2	0	25	5	0	8	8	0	5
ign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
T Channelized		-	None	-	-	None	-	-	None	-	-	None
torage Length	60	-	-	-	-	-	-	-	-	-	-	-
eh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	
Grade, %		0	-		0	-	-	0	-	-	0	-
eak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
/vmt Flow	229	726	1	1	613	194	3	1	3	143	0	337
	,	. 20			2.0		0					
A - i /A Ai	Malant			Malano		,	Alexand.			No 0		
	Major1			Major2			Minor1	2024		Minor2	1024	740
Conflicting Flow All	832		0	729	0	0	2073	2021	737	1932	1924	740
Stage 1	-	-	-	-	-		1187	1187		737	737	-
Stage 2	-		-	-			886	834	-	1195	1187	
Critical Hdwy	4.12		1.1	4.12			7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		-	-		-		6.12	5.52	-	6.12	5.52	
Critical Hdwy Stg 2		-		-		-	6.12	5.52	-	6.12	5.52	
ollow-up Hdwy	2.218	-	-	2.218	-	-	3.518		3.318		4.018	
ot Cap-1 Maneuver	801	-	-	875	-	-	40	58	418	~ 50	67	417
Stage 1	-	-	-	-	-	-	230	262	-	410	425	-
Stage 2	-	-	-	-	-	-	339	383	-	227	262	-
latoon blocked, %		-	-		-	-						
Nov Cap-1 Maneuver	784	-	-	874	-	-	5	40	415	~ 37	46	407
Nov Cap-2 Maneuver		-		-	-	-	5	40	-	~ 37	46	-
Stage 1		-	-	-	-	-	163	185	-	284	415	-
Stage 2		-	-	-	-	-	58	374	-	158	185	-
, in the second s												
pproach	EB			WB			NB			SB		
ICM Control Delay, s	2.7			0		\$	567.3		\$	1751.6		
ICM LOS	2.1			0		Ŷ	507.5 F		Ŷ	F		
ICIVI LOG												
Aire	- 1	NDL -1	EDI		MD	MDT	MDD	001-4				
linor Lane/Major Mvn	nu	NBLn1	EBL	EBT EBR	WBL	WBT	WBR					
apacity (veh/h)		11	784		874	-	1.1	102				
ICM Lane V/C Ratio		0.636	0.292		0.001	-		4.706				
ICM Control Delay (s))	\$ 567.3	11.5		9.1	0		1751.6				
ICM Lane LOS		F	В		A	A		F				
ICM 95th %tile Q(veh	I)	1.4	1.2		0			50.8				

Traffic Impact Study for Haystack Pacifica Future plus Project PM Peak Synchro 8 Report W-Trans HCM 2010 Signalized Intersection Summary 4: Copeland St. & East D St.

	≯	+	\mathbf{F}	4	Ŧ	*	•	1	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	ĥ		٦	f)		٦	ĥ		٦.	ef 🗧	
Traffic Volume (veh/h)	229	726	1	1	613	194	3	1	3	143	0	337
Future Volume (veh/h)	229	726	1	1	613	194	3	1	3	143	0	337
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		0.96	1.00		0.95	0.99		0.99	0.99		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1863	1863	1900	1863	1863	1900
Adj Flow Rate, veh/h	229	726	1	1	613	194	3	1	3	143	0	337
Adj No. of Lanes	1	1	0	1	1	0	1	1	0	1	1	C
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	297	1055	1	325	641	203	149	100	299	450	0	380
Arrive On Green	0.09	0.57	0.57	0.00	0.48	0.48	0.24	0.24	0.24	0.24	0.00	0.24
Sat Flow, veh/h	1774	1860	3	1774	1337	423	1033	408	1224	1393	0	1557
Grp Volume(v), veh/h	229	0	727	1	0	807	3	0	4	143	0	337
Grp Sat Flow(s), veh/h/ln	1774	0	1862	1774	0	1760	1033	0	1632	1393	0	1557
Q Serve(q s), s	3.8	0.0	17.7	0.0	0.0	28.2	0.2	0.0	0.1	5.6	0.0	13.4
Cycle Q Clear(q c), s	3.8	0.0	17.7	0.0	0.0	28.2	13.5	0.0	0.1	5.7	0.0	13.4
Prop In Lane	1.00		0.00	1.00		0.24	1.00		0.75	1.00		1.00
Lane Grp Cap(c), veh/h	297	0	1057	325	0	844	149	0	398	450	0	380
V/C Ratio(X)	0.77	0.00	0.69	0.00	0.00	0.96	0.02	0.00	0.01	0.32	0.00	0.89
Avail Cap(c a), veh/h	305	0	1057	433	0	852	155	0	408	458	0	389
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	14.1	0.0	9.8	9.8	0.0	16.0	29.9	0.0	18.3	20.5	0.0	23.4
Incr Delay (d2), s/veh	11.3	0.0	1.9	0.0	0.0	20.9	0.1	0.0	0.0	0.4	0.0	20.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	3.0	0.0	9.4	0.0	0.0	18.3	0.1	0.0	0.1	2.2	0.0	7.9
LnGrp Delay(d),s/veh	25.4	0.0	11.7	9.8	0.0	36.9	29.9	0.0	18.4	20.9	0.0	44.2
LnGrp LOS	С		В	A		D	С		В	С		D
Approach Vol, veh/h		956			808			7			480	
Approach Delay, s/veh		15.0			36.9			23.3			37.2	
Approach LOS		В			D			С			D	
Timer	1	2	3	4	5	6	7	8				_
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		19.6	4.1	40.3		19.6	9.7	34.7				
Change Period (Y+Rc), s		4.0	4.0	4.0		4.0	4.0	4.0				
Max Green Setting (Gmax), s		16.0	4.0	33.0		16.0	6.0	31.0				
Max Q Clear Time (q c+I1), s		15.5	2.0	19.7		15.4	5.8	30.2				
Green Ext Time (p_c), s		0.0	0.0	4.5		0.2	0.0	0.5				
Intersection Summary												
HCM 2010 Ctrl Delay			27.6									
HCM 2010 LOS			С									

Traffic Impact Study for Haystack Pacifica Future plus Project PM Peak - Signal at Copeland/D Synchro 8 Report

03/20/2019

HCM 2010 TWSC 5: Weller St. & Internal Street

03/20/2019

Intersection						
Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		î,			÷.
Traffic Vol, veh/h	0	11	43	4	6	49
Future Vol. veh/h	0	11	43	4	6	49
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-				
Veh in Median Storage	. # 0	-	0	-	-	0
Grade, %	0	-	0			0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	11	43	4	6	49
WWIIITTIOW	0		чJ	т	0	77
	Minor1		Najor1		Major2	
Conflicting Flow All	106	45	0	0	47	0
Stage 1	45	-	-	-	-	-
Stage 2	61	-	-		-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-		-	-	-
Critical Hdwy Stg 2	5.42	-	-			
Follow-up Hdwy	3.518	3.318			2.218	-
Pot Cap-1 Maneuver	892	1025			1560	
Stage 1	977					
Stage 2	962	-		-	-	-
Platoon blocked, %	702					
Mov Cap-1 Maneuver	888	1025			1560	-
Mov Cap-2 Maneuver	888	1025			1300	-
Stage 1	973					
Stage 2	973		-			
Stage 2	902				-	
Approach	WB		NB		SB	
HCM Control Delay, s	8.6		0		0.8	
HCM LOS	A					
Minor Lane/Major Mvm	it	NBT	NBR	VBLn1	SBL	SBT
Capacity (veh/h)		-		1025	1560	-
		-	-	0.011	0.004	-
HCM Lane V/C Ratio				8.6	7.3	0
		-	-	0.0		
HCM Lane V/C Ratio		-	-	A	A	А

Traffic Impact Study for Haystack Pacifica Future plus Project PM Peak

Synchro 8 Report W-Trans HCM 2010 TWSC 6: Copeland St. & Internal Street

Conflicting Peds, #/hr 0 0 0 0 0

Veh in Median Storage, # 0 - - 0 0

Intersection Int Delay, s/veh

Movement Lane Configurations

Traffic Vol, veh/h

Future Vol, veh/h

Sign Control RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Grade, %

Mvmt Flow

	0.2					
	EDI		NDL	NDT	CDT	CDD
	EBL	EBR	NBL	NBT	SBT	SBR
	Y			र्भ	_ î⊧	
	7	2	4	420	581	7
	7	2	4	420	581	7
	0	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
		None		None		None
	0	-	-		-	-
), †	# 0	-	-	0	0	-
	0	-		0	0	-
	100	100	100	100	100	100
	2	2	2	2	2	2
	7	2	4	420	581	7
			4-14		4-1	

Major/Minor I	Minor2	1	Major1	Ν	/lajor2	
Conflicting Flow All	1013	585	588	0	-	0
Stage 1	585	-	-	-	-	-
Stage 2	428		-		-	-
Critical Hdwy	6.42		4.12		-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	265	511	987	-	-	-
Stage 1	557	-	-	-	-	-
Stage 2	657	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	264	511	987	-		
Mov Cap-2 Maneuver	264	-	-	-	-	-
Stage 1	554	-	-	-	-	-
Stage 2	657	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	17.5		0.1		0	
HCM LOS	C		0.1		0	
TIGM E05	U					
Minor Lane/Major Mvm	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		987	-	296	-	-
HCM Lane V/C Ratio		0.004		0.03	-	

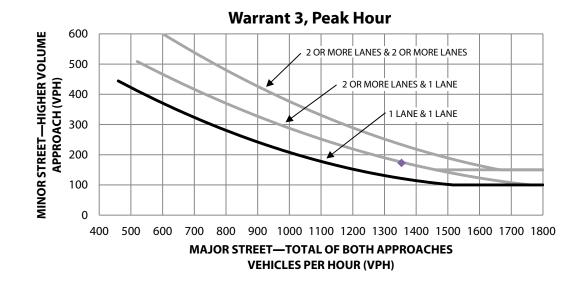
Capacity (veh/h)	987	-	296	-		
HCM Lane V/C Ratio	0.004	-	0.03	-	-	
HCM Control Delay (s)	8.7	0	17.5	-	-	
HCM Lane LOS	A	А	С	-	-	
HCM 95th %tile Q(veh)	0	-	0.1	-	-	

03/20/2019

Traffic Impact Study for Haystack Pacifica Future plus Project PM Peak

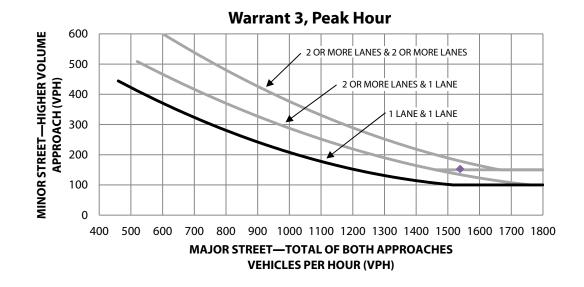
Appendix C

Signal Warrants



This page intentionally left blank

City of Petaluma D Street & Copeland Street


	Doncera	copelana street		
	Major Str	eet	Minor Street	
Street Name	D Stree	t	Copeland Street	
Direction	E-W		N-S	
Number of Lanes	1		1	
Approach Speed	25		25	
Population less than 10,000?	No			
Date of Count:	Tuesday, Septer	mber 29, 2015		
Scenario:	AM Existing			
Warrant 3 Met?: Met when eithe				Yes
Condition A: Met when condit	ions A1, A2, and A3	are met		Not Met
Condition A1				Not Met
	sign equals or excee	eds four vehicle-ho	pproach (one direction only) urs for a one lane approach,	
Minor	Approach Delay:	1.5 vehicle-h	ours	
Condition A2	,			Met
The volume on the sa 100 vph for one movi	••		on only) equals or exceeds oving lanes	
Minor Ap	proach Volume:	173 vph		
Condition A3				Met
The total entering vo intersections with fou approaches		•	or exceeds 800 vph for ersections with three	
Total E	ntering Volume:	1531 vph		
Condition B	-	-		Met
The plotted point fall	s above the curve			

City of Petaluma D Street & Copeland Street

	Major Str	eet	Minor Street	
Street Name	D Stree	t	Copeland Street	
Direction	E-W		N-S	
Number of Lanes	1		1	
Approach Speed	25		25	
Population less than 10,000?	No			
Date of Count:	Tuesday, Septer	mber 29, 2015		
Scenario:	PM Existing			
Warrant 3 Met?: Met when eithe	r Condition A or B	is met		Yes
Condition A: Met when conditi	ons A1, A2, and A3 a	are met		Not Met
Condition A1				Not Met
	sign equals or excee	eds four vehicle-ho	pproach (one direction only) ours for a one lane approach,	
Minor A	Approach Delay:	2.64 vehicle-	hours	
Condition A2				Met
The volume on the sa 100 vph for one movi	••		ion only) equals or exceeds oving lanes	
Minor Ap	proach Volume:	153 vph		
Condition A3				Met
5		•	or exceeds 800 vph for tersections with three	
Total E	ntering Volume:	1700 vph		
Condition B	2			Met
The plotted point falls	s above the curve			

City of Petaluma D Street & Copeland Street

	Dureera	Copeiand Street		
	Major Str	eet	Minor Street	
Street Name	D Stree	t	Copeland Street	
Direction	E-W		N-S	
Number of Lanes	1		1	
Approach Speed	25		25	
Population less than 10,000?	No			
Date of Count:	Tuesday, Septer	mber 29, 2015		
Scenario:	AM Existing plu	s Project		
Warrant 3 Met?: Met when eithe	r Condition A or B	is met		Yes
Condition A: Met when condit	ions A1, A2, and A3	are met		Not Met
Condition A1				Not Met
	sign equals or excee	eds four vehicle-ho	proach (one direction only) urs for a one lane approach,	
Minor A	Approach Delay:	1.84 vehicle-h	ours	
Condition A2				Met
The volume on the sa 100 vph for one movi			on only) equals or exceeds ving lanes	
Minor Ap	proach Volume:	178 vph		
Condition A3				Met
The total entering vol intersections with fou approaches		J .	r exceeds 800 vph for ersections with three	
Total E	ntering Volume:	1551 vph		
Condition B	5			Met
The plotted point fall	s above the curve			

Warrant 3, Peak Hour 600 **MINOR STREET—HIGHER VOLUME** 2 OR MORE LANES & 2 OR MORE LANES 500 2 OR MORE LANES & 1 LANE **APPROACH (VPH)** 400 1 LANE & 1 LANE 300 200 100 0 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 **MAJOR STREET—TOTAL OF BOTH APPROACHES VEHICLES PER HOUR (VPH)**

City of Petaluma D Street & Copeland Street

	Dureera	copeiand stree	et	
	Major Str	eet	Minor Street	
Street Name	D Stree	t	Copeland Street	
Direction	E-W		N-S	
Number of Lanes	1		1	
Approach Speed	25		25	
Population less than 10,000?	No			
Date of Count:	Tuesday, Septer	mber 29, 2015		
Scenario:	PM Existing plus	s Project		
Warrant 3 Met?: Met when eithe	r Condition A or B	is met		Yes
Condition A: Met when conditi	ons A1, A2, and A3	are met		Not Met
Condition A1				Not Met
	sign equals or excee	eds four vehicle-	t approach (one direction only) hours for a one lane approach,	
Minor A	pproach Delay:	3.55 vehicle	e-hours	
Condition A2				Met
The volume on the sa 100 vph for one movi			ection only) equals or exceeds moving lanes	
Minor Ap	proach Volume:	161 vph		
Condition A3		·		Met
The total entering vol intersections with fou			ls or exceeds 800 vph for intersections with three	
approaches				
approaches	ntering Volume:	1729 vph		
approaches			intersections with three	Met

Warrant 3, Peak Hour 600 **MINOR STREET—HIGHER VOLUME** 2 OR MORE LANES & 2 OR MORE LANES 500 2 OR MORE LANES & 1 LANE **APPROACH (VPH)** 400 1 LANE & 1 LANE 300 200 ٠ 100 0 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 **MAJOR STREET—TOTAL OF BOTH APPROACHES VEHICLES PER HOUR (VPH)**

Appendix D

Proportional Share Spreadsheet

This page intentionally left blank

Proportional Share Calculations Haystack Pacifica

			Total Volume Entering the Intersection of				
			D Street/0	Copeland Street			
	AM	PM		AM	PM		
			Existing	1531	1700		
Project Trips (T)	20	29	Future Year	1909	2220		

Destription of Project Improvement:

Installing traffic signal at intersection of D Street/Copeland Street

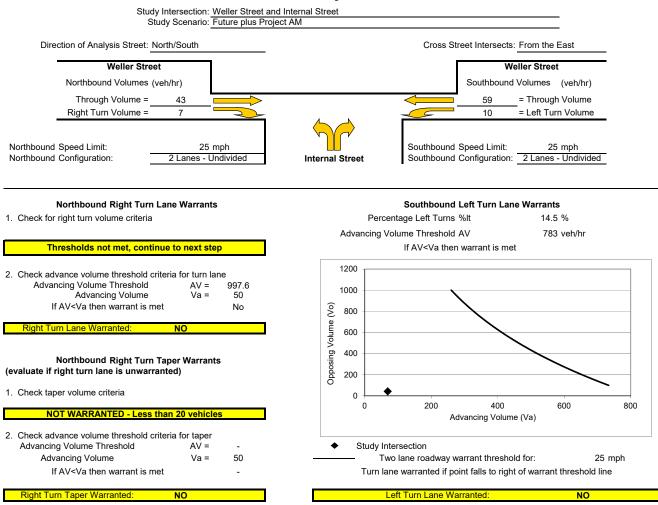
Calculation of Project Share

P = T / (TB - TE)where: P = Equitable ShareT = Project trips during the affected peak hourTB = Build-out volumesTE = Existing volumesT = 20 29

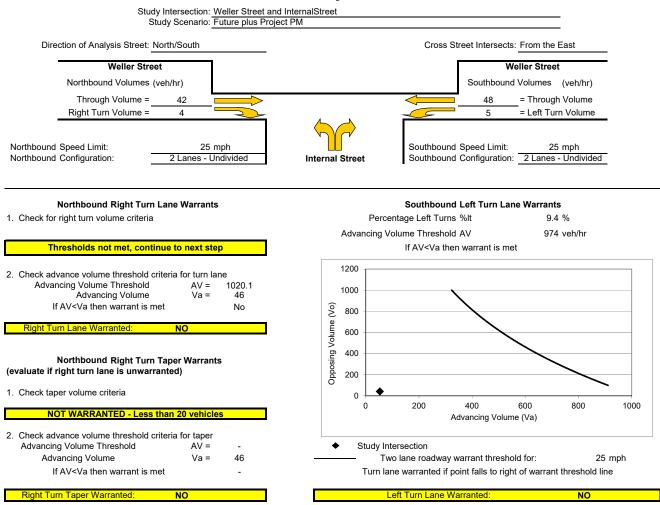
	29	20	I
	2220	1909	ТВ
AVERAGE	1700	1531	TE
5.4%	5.6%	5.3%	Р

Equitable Share (per Caltrans "Guide for the Preparation of Traffic Impact Studies")

This page intentionally left blank

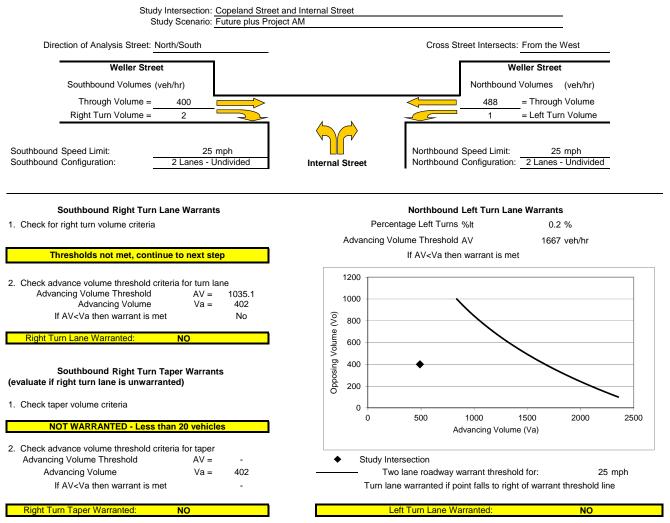

Appendix E

Turn Lane Warrants

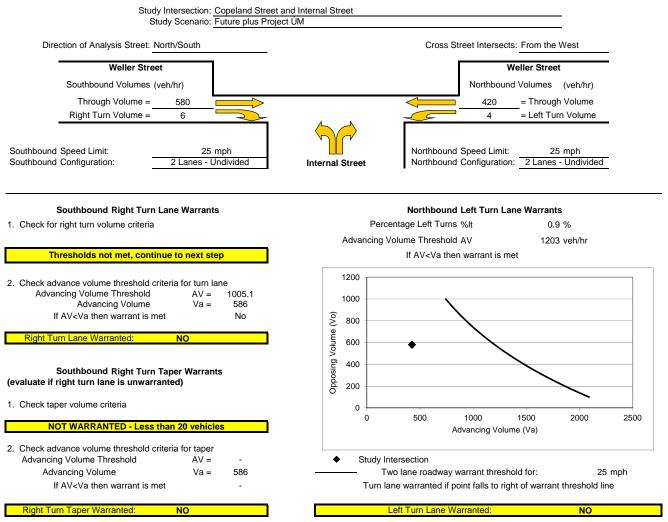


This page intentionally left blank

Turn Lane Warrant Analysis - Tee Intersections


Methodology based on Washington State Transportation Center Research Report Method For Prioritizing Intersection Improvements, January 1997. The right turn lane and taper analysis is based on work conducted by Cottrell in 1981.

Turn Lane Warrant Analysis - Tee Intersections


Methodology based on Washington State Transportation Center Research Report Method For Prioritizing Intersection Improvements, January 1997. The right turn lane and taper analysis is based on work conducted by Cottrell in 1981.

Methodology based on Washington State Transportation Center Research Report Method For Prioritizing Intersection Improvements, January 1997. The right turn lane and taper analysis is based on work conducted by Cottrell in 1981.

Methodology based on Washington State Transportation Center Research Report Method For Prioritizing Intersection Improvements, January 1997. The right turn lane and taper analysis is based on work conducted by Cottrell in 1981.